Page last updated: 2024-08-16

triazolam and warfarin

triazolam has been researched along with warfarin in 11 studies

Research

Studies (11)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (9.09)18.2507
2000's6 (54.55)29.6817
2010's4 (36.36)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Topliss, JG; Yoshida, F1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Chen, L; He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Wang, Y; Zhang, W1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Fitzgerald, K; Koch, KM; Mills, JG; Sirgo, MA; Webster, C; Wood, JR1
Cantrell, VE; Eckstein, J; Hall, SD; Hamman, MA; Jones, DR; Ring, BJ; Ruterbories, K; Williams, JA; Wrighton, SA1
Hasegawa, M; Inoue, R; Kakuni, M; Tahara, H; Tateno, C; Ushiki, J1

Reviews

2 review(s) available for triazolam and warfarin

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
The safety of ranitidine in over a decade of use.
    Alimentary pharmacology & therapeutics, 1997, Volume: 11, Issue:1

    Topics: Anti-Ulcer Agents; Clinical Trials as Topic; Databases, Factual; Drug Interactions; Ethanol; Heartburn; Histamine H2 Antagonists; Humans; Product Surveillance, Postmarketing; Ranitidine; Theophylline; Triazolam; Warfarin

1997

Other Studies

9 other study(ies) available for triazolam and warfarin

ArticleYear
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:11

    Topics: Blood Proteins; Chemistry, Physical; Computer Simulation; Humans; Membranes, Artificial; Models, Biological; Pharmaceutical Preparations; Protein Binding; Tissue Distribution

2009
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7.
    Drug metabolism and disposition: the biological fate of chemicals, 2002, Volume: 30, Issue:8

    Topics: Alprazolam; Aryl Hydrocarbon Hydroxylases; Biotransformation; Clarithromycin; Coumarins; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Cytochromes b5; Diltiazem; Estradiol; Humans; In Vitro Techniques; Kinetics; Microsomes, Liver; Midazolam; Nifedipine; Tamoxifen; Testosterone; Triazolam

2002
Investigation of drug-drug interactions caused by human pregnane X receptor-mediated induction of CYP3A4 and CYP2C subfamilies in chimeric mice with a humanized liver.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:3

    Topics: Animals; Biological Transport; Biotransformation; Chimera; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Drug Interactions; Humans; Inactivation, Metabolic; Liver; Male; Mephenytoin; Mice; Microsomes, Liver; Models, Animal; Pioglitazone; Pregnane X Receptor; Receptors, Steroid; Rifampin; RNA, Messenger; Thiazolidinediones; Triazolam; Warfarin

2012