triacetone-triperoxide has been researched along with cyclonite* in 4 studies
4 other study(ies) available for triacetone-triperoxide and cyclonite
Article | Year |
---|---|
Molecular simulations of adsorption of RDX and TATP on IRMOF-1(Be).
The influence of different sorption sites of isoreticular metal-organic frameworks (IRMOFs) on interactions with explosive molecules is investigated. Different connector effects are taken into account by choosing IRMOF-1(Be) (IRMOF-1 with Zn replaced by Be), and two high explosive molecules: 1,3,5-trinitro-s-triazine (RDX) and triacetone triperoxide (TATP). The key interaction features (structural, electronic and energetic) of selected contaminants were analyzed by means of density functional calculations. The interaction of RDX and TATP with different IRMOF-1(Be) fragments is studied. The results show that physisorption is favored and occurs due to hydrogen bonding, which involves the C-H groups of both molecules and the carbonyl oxygen atoms of IRMOF-1(Be). Additional stabilization of RDX and TATP arises from weak electrostatic interactions. Interaction with IRMOF-1(Be) fragments leads to polarization of the target molecules. Of the molecular configurations we have studied, the Be-O-C cluster connected with six benzene linkers (1,4-benzenedicarboxylate, BDC), possesses the highest binding energy for the studied explosives (-16.4 kcal mol(-1) for RDX and -12.9 kcal mol(-1) for TATP). The main difference was discovered to be in the preferable adsorption site for adsorbates (RDX above the small and TATP placed above the big cage). Based on these results, IRMOF-1 can be suggested as an effective material for storage and also for separation of similar explosives. Hydration destabilizes most of the studied adsorption systems by 1-3 kcal mol(-1) but it leads to the same trend in the binding strength as found for the non-hydrated complexes. Topics: Adsorption; Explosive Agents; Heterocyclic Compounds, 1-Ring; Hydrogen Bonding; Molecular Dynamics Simulation; Peroxides; Static Electricity; Triazines | 2012 |
Geometry-independent neutral desorption device for the sensitive EESI-MS detection of explosives on various surfaces.
A novel geometry-independent neutral desorption (GIND) device was successfully developed, which made neutral desorption (ND) sampling easier and more robust on virtually all types of surfaces. The GIND device features a small air-tight enclosure with fixed space between the ND gas emitter, the sample surface, and the sample collector. Besides easy fabrication and convenient use, this configuration facilitates efficient neutral sample transfer and results in high sensitivity by preventing material loss during the ND process. The effects of various operating parameters of the GIND device such as desorption gas composition, surface wetness, gas flow rate, distance between the surface and the gas emitter, internal diameter of the sample outlet, and GIND device material were experimentally investigated. By using the GIND device, trace amounts of typical explosives such as TNT, RDX, HMX, TATP, etc., were successfully sampled from many different kinds of surfaces, including human skin, glove, glass, envelope, plastic, leather, glass, and clothes. GIND-sampled explosives were detected by multiple-stage extractive electrospray ionization mass spectrometry (EESI-MS). Ion/molecule reactions of explosives such as RDX and TATP were implemented in the EESI source for the rapid detection with enhanced sensitivity and specificity. The typical time for a single sample analysis was a few seconds. Successful transportation of the neutral analytes over a distance longer than 10 m was demonstrated, without either significant signal loss or serious delay of signal response. The limit of detection for these explosives in the study was in the range of ca. 59-842 fg (S/N = 3, n = 8) on various surfaces. Acceptable relative standard deviation (RSD) values (ca. 4.6-10.2%, n = 8) were obtained for all the surfaces tested, showing the successful sampling of trace non-volatile explosive compounds (sub-picogram) by the GIND device for the EESI mass spectrometric analysis. Topics: Azocines; Bridged Bicyclo Compounds, Heterocyclic; Explosive Agents; Heterocyclic Compounds, 1-Ring; Nitroglycerin; Peroxides; Solvents; Spectrometry, Mass, Electrospray Ionization; Triazines; Trinitrotoluene | 2010 |
Accumulation of explosives in hair--part II: factors affecting sorption.
This study examines the sorption of eight explosives (2,4,6-trinitrotoluene [TNT]; pentaerythritol tetranitrate [PETN]; hexahydro-1,3,5-trinitro-s-triazine [RDX]; diacetone diperoxide [DADP]; triacetone triperoxide [TATP]; ethylene glycol [EGDN], nitroglycerin [NG]; and 2,4-dinitrotoluene [DNT]) to human hair. The study uses only cut hair, which is exposed to explosive vapor. The vapor transfer studies reported herein indicated that hair did not reach saturation even after 2.5 years of exposure to TNT. While previous studies showed black hair sorbed more explosive than blond or brown, this study reports that red hair sorption is similar to black, while grey hairs, exposed along with black hair from the same individual, sorbed significantly less explosive than the same individual's black hairs. In a study using only black hair, a slight racial bias was observed with sorption greater for Mongoloid hair as compared to Caucasian or Negroid. Only for Mongoloid hairs were enough samples studied to examine for a gender bias, but one was not observed. There was much variability in results in all categories (hair color, race, and gender) that trends were established only in general terms. Hair at different ages was tested for a few individuals. Detailed studies focused on the sorption of TATP and TNT as these appear to be sorbed most differently-TATP mainly on the hair surface and TNT both on the surface and in the cortex. The uptake of high vapor pressure explosives (e.g., TATP) and moderate vapor pressure explosives (e.g., TNT) by hair was rapid and could be detected within about 1 h of exposure. Both explosives were readily sorbed by pure melanin. Topics: Adsorption; Age Factors; Dinitrobenzenes; Ethylene Glycol; Explosive Agents; Forensic Medicine; Hair; Hair Color; Heterocyclic Compounds, 1-Ring; Humans; Nitroglycerin; Pentaerythritol Tetranitrate; Peroxides; Racial Groups; Triazines; Volatilization | 2007 |
Accumulation of explosives in hair.
The sorption of explosives (TNT, RDX, PETN, TATP, EGDN) to hair during exposure to their vapors is examined. Three colors of hair were simultaneously exposed to explosive vapor. Following exposure of hair, the sorbed explosive was removed by extraction with acetonitrile and quantified. Results show that sorption of explosives, via vapor diffusion, to black hair is significantly greater than to blond, brown or bleached hair. Furthermore, the rate of sorption is directly related to the vapor density of the explosive: EGDN > TATP >>>TNT >> PETN > RDX. In some cases, the explosive-containing hair was subject to repeated washings with sodium dodecylsulfate or simply left out in an open area to determine the persistence of the explosive contamination. While explosive is removed from hair with time or washing, some persists. These results indicate that hair can be a useful indicator of explosive exposure/handling. Topics: Ethylene Glycols; Explosions; Forensic Medicine; Hair; Heterocyclic Compounds, 1-Ring; Humans; Pentaerythritol Tetranitrate; Peroxides; Triazines; Trinitrotoluene; Volatilization | 2005 |