tretinoin and sodium-arsenite

tretinoin has been researched along with sodium-arsenite* in 3 studies

Other Studies

3 other study(ies) available for tretinoin and sodium-arsenite

ArticleYear
Arsenic represses airway epithelial mucin expression by affecting retinoic acid signaling pathway.
    Toxicology and applied pharmacology, 2020, 05-01, Volume: 394

    Arsenic is a ubiquitous environmental toxicant, found in high concentrations worldwide. Although abundant research has dealt with arsenic-induced cancers, studies on mechanisms of non-malignant lung diseases have not been complete. In addition, decades of research have mostly concentrated on high-dose arsenic exposure, which has very limited use in modeling the biological effects of today's low-dose exposures. Indeed, accumulated evidence has shown that low-dose arsenic exposure (i.e. ≤100 ppb) may also alter lung homeostasis by causing host susceptibility to viral infection. However, the underlying mechanism of this alteration is unknown. In this study, we found that low-dose sodium arsenite (As (III)) repressed major airway mucins-MUC5AC and MUC5B at both mRNA and protein levels. We further demonstrated that this repression was not caused by cellular toxicity or mediated by the reduction of a common mucin-inducing pathway-EGFR. Other established mucin activators- dsRNA, IL1β or IL17 were not able to override As (III)-induced mucin repression. Interestingly, the suppressing effect of As (III) appeared to be partially reversible, and supplementation of all trans retinoic acid (t-RA) doses dependently restored mucin gene expression. Further analyses indicated that As (III) treatment significantly reduced the protein level of retinoic acid receptors (RARα, γ and RXRα) as well as RARE promoter reporter activity. Therefore, our study fills in an important knowledge gap in the field of low-dose arsenic exposure. The interference of RA signaling, and mucin gene expression may be important pathogenic factors in low-dose arsenic induced lung toxicity.

    Topics: Arsenic; Arsenites; Cell Line; Cell Survival; ErbB Receptors; Gene Expression; Gene Expression Regulation; Humans; Mucin 5AC; Mucin-5B; Mucins; Respiratory Mucosa; Signal Transduction; Sodium Compounds; Tretinoin

2020
All-trans retinoic acid protects against arsenic-induced uterine toxicity in female Sprague-Dawley rats.
    Toxicology and applied pharmacology, 2011, Dec-01, Volume: 257, Issue:2

    Arsenic exposure frequently leads to reproductive failures by disrupting the rat uterine histology, hormonal integrity and estrogen signaling components of the rat uterus, possibly by generating reactive oxygen species. All-trans retinoic acid (ATRA) was assessed as a prospective therapeutic agent for reversing reproductive disorders.. Rats exposed to arsenic for 28 days were allowed to either recover naturally or were treated simultaneously with ATRA for 28 days or treatment continued up to 56 days. Hematoxylin-eosin double staining was used to evaluate changes in the uterine histology. Serum gonadotropins and estradiol were assayed by ELISA. Expression of the estrogen receptor (ERα), an estrogen responsive gene vascular endothelial growth factor (VEGF), and cell cycle regulatory proteins, cyclin D1 and CDK4, was assessed by RT-PCR, immunohistochemistry and western blot analysis.. ATRA ameliorated sodium arsenite-induced decrease in circulating estradiol and gonadotropin levels in a dose- and time-dependent manner, along with recovery of luminal epithelial cells and endometrial glands. Concomitant up regulation of ERα, VEGF, cyclin D1, CDK4 and Ki-67 was also observed to be more prominent for ATRA-treated rats as compared to the rats that were allowed to recover naturally for 56 days.. Collectively, the results reveal that ATRA reverses arsenic-induced disruption of the circulating levels of gonadotropins and estradiol, and degeneration of luminal epithelial cells and endometrial glands of the rat uterus, indicating resumption of their functional status. Since structural and functional maintenance of the pubertal uterus is under the influence of estradiol, ATRA consequently up regulated the estrogen receptor and resumed cellular proliferation, possibly by an antioxidant therapeutic approach against arsenic toxicity.

    Topics: Animals; Arsenic; Arsenites; Female; Random Allocation; Rats; Rats, Sprague-Dawley; Reproductive Control Agents; Sodium Compounds; Tretinoin; Uterus

2011
Heat shock glycoprotein GP50: product of the retinoic acid-inducible J6 gene.
    Experimental cell research, 1994, Volume: 210, Issue:2

    High intracellular levels of heat shock proteins and enhanced protein glycosylation are two phenomena closely associated with the cellular stress response. GP50 is the major heat-induced glycoprotein in Chinese hamster ovary (CHO) cells; however, GP50 is not well characterized, and its function is unknown. J6 is a gene originally identified in F9 murine teratocarcinoma cells after exposure to retinoic acid. In this study we show that J6 is heat-inducible and codes for a protein that shares characteristics with GP50. Western blotting of CHO cell homogenates, using a J6 polyclonal antibody, showed a single band with a molecular weight identical to that of GP50. Thermotolerant cells showed increased levels of the J6/GP50 protein. Heat-shocked CHO cells also accumulated transiently high levels of J6 mRNA between 2 and 7 h following 10 min at 45 degrees C. These induction kinetics are similar to those for GP50 labeling with D-[3H]mannose and to the activation of major heat shock genes, e.g., hsp70. Hybrid selection of J6 mRNA from CHO cells, followed by in vitro translation, produced a single band on SDS-PAGE with a molecular weight identical to that of deglycosylated GP50. Neither cellular proliferation (exponential growth versus plateau phase) nor the specific heat shock temperature (41.5 degrees C versus 45 degrees C) had significant effects on J6 induction by heat stress. Stress conditions other than hyperthermia, including ethanol, arsenite, and hypoxia, increased J6 mRNA levels. Conversely, J6 mRNA was reduced by quercetin, brefeldin A, okadaic acid, uv, and hydrogen peroxide. Our data support the hypothesis that J6 is a heat shock gene with a gene product identical to the polypeptide moiety of GP50.

    Topics: Animals; Arsenites; Brefeldin A; Cell Division; Cell Hypoxia; CHO Cells; Cricetinae; Cyclopentanes; Ethers, Cyclic; Gene Expression Regulation; Heat-Shock Proteins; Hot Temperature; Hydrogen Peroxide; Kinetics; Mice; Molecular Weight; Nerve Tissue Proteins; Okadaic Acid; Protein Synthesis Inhibitors; Protein Tyrosine Phosphatases; Quercetin; RNA, Messenger; Sodium Compounds; Teratoma; Transcription, Genetic; Tretinoin; Ultraviolet Rays; X-Rays

1994