tretinoin and plerixafor

tretinoin has been researched along with plerixafor* in 2 studies

Other Studies

2 other study(ies) available for tretinoin and plerixafor

ArticleYear
Role of monocyte chemoattractant protein-1, stromal derived factor-1 and retinoic acid in pathophysiology of neuropathic pain in rats.
    Journal of basic and clinical physiology and pharmacology, 2016, Jun-01, Volume: 27, Issue:4

    Chemokines have been recently recognized to play a role in chronic pain syndromes' pathophysiology. This study investigated the role of monocyte chemoattractant protein-1 (MCP-1), stromal cell derived factor-1 (SDF-1), and retinoic acid (RA) as targets for the therapeutic approach of neuropathic pain.. A chronic constriction injury (CCI) model of neuropathic pain by unilateral ligation of left sciatic nerve was performed in adult female Wistar rats. The effects of doxycycline (Dox, 50 mg/kg/day i.p. for 7 days), single dose of bicyclam (5 mg/kg i.p.), RA (15 mg/kg/day i.p. for 7 days), and their combination(s) on behavioral tests of nociception (Von Frey filaments; paw pressure test) on days 0, 1, 3, 5, and 7 of operation were studied. Serum concentrations of MCP-1 and SDF-1 were measured by ELISA. Histological examination of the sciatic nerve was investigated.. CCI of sciatic nerve significantly induced mechanical allodynia and hyperalgesia and an increase of MCP-1 and SDF-1 serum levels. Dox-treated groups (Dox, Dox+bicyclam, Dox+RA, Dox+bicyclam+RA) and bicyclam-treated groups (bicyclam, Dox+bicyclam, bicyclam+RA, Dox+bicyclam+RA) attenuated CCI-induced behavioral and biochemical changes. RA inhibited CCI-induced mechanical hyperalgesia but produced a time-dependent reversal of allodynia. Histological findings showed degenerative changes of sciatic nerve after CCI that were partially recovered in Dox-treated groups.. These findings demonstrate an association between serum MCP-1 and SDF-1 concentrations and behavioral manifestations of neuropathic pain. RA administration decreased neuropathic pain (antihyperalgesic effect) but did not cause any improvement in sciatic nerve tissues, either alone or in combination with chemokine antagonists. Thus, chemokines may serve as potential targets for drug development in neuropathic pain treatment.

    Topics: Animals; Benzylamines; Chemokine CCL2; Chemokine CXCL12; Cyclams; Disease Models, Animal; Doxycycline; Female; Heterocyclic Compounds; Hyperalgesia; Neuralgia; Nociception; Pain Measurement; Pain Threshold; Rats; Rats, Wistar; Sciatic Nerve; Tretinoin

2016
Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate.
    Development (Cambridge, England), 2011, Volume: 138, Issue:10

    We have discovered that angioblasts trigger an early inductive event in pancreatic differentiation. This event occurs soon after gastrulation, before the formation of blood vessels. Morphological studies revealed that Lmo2-expressing angioblasts reside in proximity to the somitic mesoderm and the gut endoderm from which pancreatic progenitors arise. The chemokine ligand CXCL12 expressed in the gut endoderm functions to attract the angioblasts that express its receptor CXCR4. Angioblasts then signal back to the gut endoderm to induce Pdx1 expression. Gain-of-function and loss-of-function experiments for CXCL12 and CXCR4 were performed to test their function in blood vessel formation and pancreatic differentiation. The ectopic expression of Cxcl12 in the endoderm attracted the angioblasts and induced ectopic Pdx1 expression, resulting in an expanded pancreatic bud and an increased area of insulin-expressing cells. By contrast, in chick embryos treated with beads soaked in AMD3100, an inhibitor of CXCR4, the migration of angioblasts towards the Cxcl12-expressing gut endoderm was arrested, causing a malformation of blood vessels. This led to the generation of a smaller pancreatic bud and a reduced area of insulin-expressing cells. Taken together, these results indicate that the gut endoderm and angioblasts attract each other through reciprocal CXCL12 and CXCR4 signaling. This has a pivotal role in the fate establishment of the pancreatic progenitor cells and in the potentiation of further differentiation into endocrine β-cells.

    Topics: Animals; Avian Proteins; Base Sequence; Benzylamines; Cell Differentiation; Cell Movement; Chemokine CXCL12; Chick Embryo; Cyclams; DNA Primers; Embryonic Stem Cells; Endoderm; Gene Expression Regulation, Developmental; Heterocyclic Compounds; Homeodomain Proteins; Insulin-Secreting Cells; Mesoderm; Models, Biological; Neovascularization, Physiologic; Pancreas; Receptors, CXCR4; Signal Transduction; Trans-Activators; Tretinoin

2011