tretinoin has been researched along with pimagedine* in 3 studies
3 other study(ies) available for tretinoin and pimagedine
Article | Year |
---|---|
Compounds blocking methylglyoxal-induced protein modification and brain endothelial injury.
Elevated levels of reactive carbonyl species such as methylglyoxal triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Carbonyl stress is implicated in conditions and diseases like aging, diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Our aim was to examine the effects of methylglyoxal on human hCMEC/D3 brain endothelial cells and search for protective molecules to prevent endothelial damage.. Methylglyoxal-induced modification of albumin was tested in a cell-free assay. Endothelial cell viability was monitored by impedance measurement in real-time. The following compounds were tested in cell-free and viability assays: β-alanine, all-trans-retinoic acid, aminoguanidine, ascorbic acid, L-carnosine, GW-3333, indapamide, piracetam, γ-tocopherol, U0126, verapamil. Barrier function of brain endothelial monolayers was characterized by permeability measurements and visualized by immunohistochemistry for β-catenin. mRNA expression level of 60 selected blood-brain barrier-related genes in hCMEC/D3 cells was investigated by a custom Taqman gene array.. Methylglyoxal treatment significantly elevated protein modification, exerted toxicity, reduced barrier integrity, increased permeability for markers FITC-dextran and albumin and caused higher production of reactive oxygen species in hCMEC/D3 endothelial cells. Changes in the mRNA expression of 30 genes coding tight junction proteins, transporters and enzymes were observed in methylglyoxal-treated hCMEC/D3 cells. From the tested 11 compounds only all-trans-retinoic acid, an antioxidant and antiglycation agent, U0126, a MAP/ERK kinase inhibitor and aminoguanidine attenuated methylglyoxal-induced damage in hCMEC/D3 cells.. All-trans-retinoic acid and inhibition of the MAP/ERK signaling pathway may be protective in carbonyl stress induced brain endothelial damage. Topics: Alzheimer Disease; Antioxidants; beta Catenin; Blood-Brain Barrier; Butadienes; Cell Line; Cell Survival; Endothelial Cells; Endothelium, Vascular; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Guanidines; Humans; MAP Kinase Signaling System; Nitriles; Pyruvaldehyde; Reactive Oxygen Species; Signal Transduction; Tight Junction Proteins; Tretinoin | 2014 |
Nitric oxide production in human macrophagic cells phagocytizing opsonized zymosan: direct characterization by measurement of the luminol dependent chemiluminescence.
When differentiated into mature macrophages by the combination of all-trans retinoic acid and 1,25-dihydroxyvitamin D3, the human promonocytic cell lines U937 and THP-1 expressed inducible nitric oxide synthase (iNOS) transcripts. During their differentiation, the cells acquired the capacity to produce not only superoxide anion (O2.-) but also nitric oxide (.NO) in response to IgG (or IgE)-opsonized zymosan. The inhibitors of the iNOS pathway, aminoguanidine and NG-monomethyl-L-arginine (L-NMMA), suppressed the production of .NO and enhanced the steady-state concentration of O2.- determined. Conversely, superoxide dismutase (SOD) scavenged the O2.- released and increased the .NO-derived nitrite concentration detected. These data suggested a possible interaction between O2.- and .NO. In differentiated U937 (or THP-1) cells, IgG or IgE-opsonized zymosan induced a strong time-dependent luminol-dependent chemiluminescence (LDCL), which was abrogated by SOD and partially inhibited by aminoguanidine or L-NMMA. Since the iNOS inhibitors did not directly scavenge O2.-, LDCL determination in the presence or absence of SOD and/or iNOS inhibitors demonstrated a concomitant production of O2.- and .NO. These radicals induced the formation of a .NO-derived product(s), probably peroxynitrite (ONOO-), which was required to elicit maximal LDCL. Finally, LDCL measurement provided a convenient tool to characterize iNOS triggering and demonstrated an interaction between NADPH oxidase and iNOS products in human macrophagic cells phagocytizing opsonized-zymosan. These findings show that in activated macrophages, iNOS activity can be involved in LDCL and support the debated hypothesis of iNOS participation to the microbicidal activity of human macrophages. Topics: Calcitriol; Cell Differentiation; Cell-Free System; Free Radical Scavengers; Guanidines; Humans; Immunoglobulin E; Immunoglobulin G; Leukemia, Monocytic, Acute; Luminescent Measurements; Luminol; Lymphoma, Large B-Cell, Diffuse; Macrophage Activation; Macrophages; Neoplastic Stem Cells; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; omega-N-Methylarginine; Opsonin Proteins; Phagocytosis; Superoxide Dismutase; Superoxides; Tretinoin; Tumor Cells, Cultured; Xanthine; Xanthine Oxidase; Zymosan | 1998 |
Free and protein-conjugated polyamines in mouse epidermal cells. Effect of high calcium and retinoic acid.
We have investigated polyamine metabolism in primary cultures of mouse epidermal cells. These cells, which grow at low Ca2+ levels as a monolayer with characteristics of basal cells, terminally differentiate when the extracellular Ca2+ level is raised above 1 mM. The cellular levels of free polyamines were measured, and, after incubation of cell cultures with [3H]putrescine, the distribution of label in both acid-soluble and acid-insoluble cellular components was examined. Free polyamine levels were reduced in cells induced to differentiate. Treatment with retinoic acid, which prevents differentiation and causes increased proliferation, resulted in an increase in free putrescine. Upon adjustment of the calcium concentration to a level that induces differentiation, the enzyme transglutaminase was activated, and a concomitant increase in the level of both protein-bound mono- and bis-gamma-glutamyl derivatives of putrescine and spermidine was observed. Isolation of a material of apparent molecular weight about 6000 which contains only mono-gamma-glutamylpolyamines and the finding of both mono- and bis-gamma-glutamylpolyamines in the protein fraction containing cornified cell envelopes provided the basis for speculation on polyamines in envelope formation. Our data suggest that polyamines play a role during epidermal cell differentiation through transglutaminase-mediated post-translational modification. Topics: Animals; Calcium; Cells, Cultured; Guanidines; Kinetics; Mice; Mice, Inbred BALB C; Polyamines; Protein Binding; Proteins; Putrescine; Skin; Spermidine; Spermine; Tretinoin | 1988 |