tretinoin and lauric-acid

tretinoin has been researched along with lauric-acid* in 2 studies

Other Studies

2 other study(ies) available for tretinoin and lauric-acid

ArticleYear
Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.
    Journal of nanoscience and nanotechnology, 2015, Volume: 15, Issue:1

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris.

    Topics: Acne Vulgaris; Administration, Topical; Anti-Bacterial Agents; Drug Stability; Lauric Acids; Microbial Sensitivity Tests; Nanoparticles; Particle Size; Propionibacterium acnes; Staphylococcus; Tretinoin

2015
Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes.
    Xenobiotica; the fate of foreign compounds in biological systems, 1999, Volume: 29, Issue:3

    1. Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by 12 recombinant human cytochrome P450 (P450 or CYP) enzymes and by human liver microsomes have been investigated. 2. Arachidonic acid (50 microM) significantly inhibited CYP1A1- and 1A2-dependent 7-ethoxycoumarin O-deethylations, CYP2C8-dependent taxol 6alpha-hydroxylation and CYP2C19-dependent R-warfarin 7-hydroxylation. This chemical also inhibited slightly the xenobiotic oxidations catalysed by CYP1B1, 2B6, 2C9, 2D6, 2E1 and 3A4 in recombinant enzyme systems. 3. Retinol, retinoic acid and cholecalciferol were strong inhibitors for xenobiotic oxidations catalysed by recombinant CYP1A1, 2C8 and 2C19. 4. Dixon plots of inhibitions of CYP1A1-, 1A2-, 2C8- and 2C19-dependent xenobiotic oxidations by arachidonic acid, of CYP1A1-, 2B6- and 2C19-dependent activities by retinol, and of CYP1A1- and 2C19-dependent activities by cholecalciferol indicated that these chemicals inhibit P450 activities mainly through a competitive mechanism. 5. In human liver microsomes, arachidonic acid inhibited CYP1A2-dependent theophylline hydroxylation, CYP2C8-dependent taxol 6alpha-hydroxylation and CYP2C19-dependent omeprazole 5-hydroxylation. Taxol 6alpha-hydroxylation was also inhibited by retinol and retinoic acid, and omeprazole 5-hydroxylation was inhibited by retinol in human liver microsomes. 6. These results suggest that xenobiotic oxidations by P450 enzymes are affected by endobiotic chemicals and that the endobiotic-xenobiotic interactions as well as drug-drug interactions may be of great importance when understanding the basis for pharmacological and toxicological actions of a number of xenobiotic chemicals.

    Topics: Arachidonic Acid; Aryl Hydrocarbon Hydroxylases; Cholecalciferol; Coumarins; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1B1; Cytochrome P-450 CYP2A6; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP2E1; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Ethanolamines; Humans; Isoenzymes; Lauric Acids; Microsomes, Liver; Mixed Function Oxygenases; Nifedipine; Omeprazole; Oxidation-Reduction; Oxidoreductases, N-Demethylating; Paclitaxel; Prostaglandins; Recombinant Proteins; Steroid 16-alpha-Hydroxylase; Steroid Hydroxylases; Theophylline; Tretinoin; Warfarin; Xenobiotics

1999