tretinoin has been researched along with griseolic-acid* in 1 studies
1 other study(ies) available for tretinoin and griseolic-acid
Article | Year |
---|---|
Multiple neurite formation in neuroblastoma cell lines by griseolic acid, a potent inhibitor of cyclic nucleotide phosphodiesterases.
The morphological change of several neuroblastoma cell lines induced by griseolic acid, a novel and potent inhibitor of cyclic nucleotide phosphodiesterase (PDE), was examined. In the cell lines tested, Neuro-2a (a murine neuroblastoma cell line) showed dose-dependent (1 microM-1 mM) neurite extension. Griseolic acid markedly increased the intracellular cyclic AMP level of Neuro-2a cells, suppressed DNA synthesis (82% at 1 mM), and induced multipolar (multiple-neurite-bearing)-type neuritogenesis. A similar type of neurite outgrowth was induced by 8-bromo-cyclic AMP, which also elevated the intracellular cyclic AMP concentration. In contrast, when Neuro-2a cells were treated with retinoic acid, neurite formation was of the monopolar (single-neurite-bearing) type. Papaverine and theophylline, which have been frequently used as PDE inhibitors, failed to induce these morphological changes up to 1 mM, probably owing to the lesser potency of these compounds as compared with griseolic acid on the inhibition of PDE. Retinoic acid, theophylline, and papaverine were ineffective at elevating the intracellular cyclic AMP level. These results suggest that multipolar-type cell shape change in Neuro-2a cells is correlated with the accumulation of intracellular cyclic AMP and that griseolic acid is a useful compound to induce neuroblastoma cells into terminal differentiation. Topics: 2',3'-Cyclic-Nucleotide Phosphodiesterases; 8-Bromo Cyclic Adenosine Monophosphate; Adenosine; Animals; Axons; Bucladesine; Butyrates; Butyric Acid; Cell Differentiation; Cell Line; Cyclic AMP; DNA Replication; Neuroblastoma; Tetradecanoylphorbol Acetate; Tretinoin | 1991 |