tretinoin and bryostatin-2

tretinoin has been researched along with bryostatin-2* in 2 studies

Other Studies

2 other study(ies) available for tretinoin and bryostatin-2

ArticleYear
Action of phorbol esters, bryostatins, and retinoic acid on cholesterol sulfate synthesis: relation to the multistep process of differentiation in human epidermal keratinocytes.
    The Journal of investigative dermatology, 1989, Volume: 93, Issue:1

    This study examines the action of phorbol 12-myristate 13-acetate (PMA) on the synthesis of cholesterol sulfate in cultured normal and transformed human epidermal keratinocytes and assesses the antagonistic effects by retinoids and bryostatins on PMA action in relation to the multistep program of squamous differentiation. Treatment of normal human epidermal keratinocytes (NHEK) with PMA induces terminal cell division (irreversible growth-arrest) and causes a time- and dose-dependent increase in the incorporation of Na2(35)SO4 into cholesterol sulfate, a marker for squamous cell differentiation. This stimulation in sulfate incorporation appears specific for cholesterol sulfate and is due to increased levels of cholesterol sulfotransferase activity. The increase in cholesterol sulfate accumulation parallels the increase in transglutaminase type I, another marker for squamous differentiation. Several transformed NHEK cell lines do not exhibit increased levels of cholesterol sulfate and transglutaminase type I activity after PMA treatment, indicating that they acquired defects in the regulation of squamous differentiation. Bryostatins 1 and 2, and several diacylglycerol analogues neither inhibit cell proliferation nor increase cholesterol sulfate synthesis or transglutaminase activity, indicating that these agents do not induce terminal differentiation. In contrast, the bryostatins block the increase in cholesterol sulfate and transglutaminase activity as well as the commitment to terminal cell division by PMA. Bryostatin 1 inhibits the commitment to terminal cell division and the accumulation of cholesterol sulfate significantly even when added 8 h after PMA administration. Retinoids inhibit cholesterol sulfate accumulation and the increase in transglutaminase activity by PMA but do not affect the commitment to terminal cell division. In summary, phorbol esters induce in NHEK cells a program of squamous differentiation. This process of differentiation consists of the commitment to terminal cell division and expression of a squamous phenotype. Expression of this phenotype is accompanied by an accumulation of cholesterol sulfate and increased cholesterol sulfotransferase activity. Bryostatins 1 and 2 and retinoic acid affect this differentiation process at different stages.

    Topics: Bryostatins; Cell Differentiation; Cell Line, Transformed; Cholesterol Esters; Diglycerides; Epidermal Cells; Humans; Keratins; Lactones; Macrolides; Tetradecanoylphorbol Acetate; Tretinoin

1989
Effects of bryostatins and retinoic acid on phorbol ester- and diacylglycerol-induced squamous differentiation in human tracheobronchial epithelial cells.
    Cancer research, 1989, Jul-15, Volume: 49, Issue:14

    Previous studies have shown that normal human tracheobronchial epithelial (HBE) cells undergo squamous differentiation upon treatment with phorbol 12-myristate 13-acetate (PMA). In this study, we report that induction of this differentiation program is accompanied by an increase in the accumulation of cholesterol sulfate and in transglutaminase type I activity, two markers of squamous differentiation. Several carcinoma cell lines did not exhibit an increase in these differentiation markers after PMA-treatment and appear to have acquired a defect in the mechanism that triggers differentiation. The diacylglycerol analogue, didecanoylglycerol (diC10), was also able to induce squamous differentiation. Bryostatin 1, another activator of protein kinase C, did not induce terminal cell division or increase cholesterol sulfate accumulation or transglutaminase type I activity. Bryostatin 1 not only failed to inhibit cell proliferation and to induce differentiation but antagonized the PMA- and diC10-induced commitment to terminal differentiation. The bryostatin blocked both the PMA-induced terminal cell division as well as the expression of the two differentiation markers. Retinoids were found not to affect the PMA-induced commitment to terminal cell division but did inhibit the expression of the differentiated phenotype. Our results indicate that the bryostatins and retinoids affect the multistep process of squamous differentiation in tracheobronchial epithelial cells at two different stages.

    Topics: Antineoplastic Agents; Bronchi; Bryostatins; Cell Differentiation; Cells, Cultured; Diglycerides; Epithelial Cells; Epithelium; Glycerides; Humans; Kinetics; Lactones; Macrolides; Organ Culture Techniques; Sulfates; Tetradecanoylphorbol Acetate; Trachea; Transglutaminases; Tretinoin

1989