tretinoin has been researched along with 1-2-dioleoyloxy-3-(trimethylammonium)propane* in 5 studies
5 other study(ies) available for tretinoin and 1-2-dioleoyloxy-3-(trimethylammonium)propane
Article | Year |
---|---|
Liposome nano-formulation with cationic polar lipid DOTAP and cholesterol as a suitable pH-responsive carrier for molecular therapeutic drug (all-trans retinoic acid) delivery to lung cancer cells.
The molecular targeted drug ATRA demands a suitable carrier that delivers to the cancer site due to its poor bioavailability and drug resistance. ATRA, being a lipid with carboxylic acid, has been nano-formulated as a cationic lipo-ATRA with DOTAP:cholesterol:ATRA (5:4:1) and its pH-responsive release, intracellular drug accumulation, and anticancer effect on human lung cancer (A549) cell line analysed. The analysis of the physicochemical characteristics of the developed lipo-ATRA (0.8 µmol) revealed that the size of 231 ± 2.35 d.nm had a zeta potential of 6.4 ± 1.19 and an encapsulation efficiency of 93.7 ± 3.6%. The ATRA release from lipo-ATRA in vitro was significantly (p ≤ 0.05) higher at acidic pH 6 compared to pH 7.5. The intracellular uptake of ATRA into lipo-ATRA-treated A549 cells was seven-fold higher (0.007 ± 0.001 mg/ml) while only three-fold uptake was observed in free ATRA treatment (0.003 ± 0.002 mg/ml). The lipo-ATRA treatment caused a highly significant (p ≤ 0.001) decrease in percent cell viability at 48 h when compared with the free ATRA treatment. Overall, the results proved that the developed lipo-ATRA has suitable physicochemical properties with enhanced ATRA release at acidic pH, while maintaining stability at physiologic pH and temperature. This resulted in an increased ATRA uptake by lung cancer cells with enhanced treatment efficiency. Hence, it is concluded that DOTAP lipo-ATRA is a suitable carrier for ATRA delivery to solid cancer cells. Topics: Cholesterol; Fatty Acids, Monounsaturated; Humans; Hydrogen-Ion Concentration; Liposomes; Lung Neoplasms; Quaternary Ammonium Compounds; Tretinoin | 2021 |
Enhancement of tumor suppressor RAR-β protein expression by cationic liposomal-ATRA treatment in benzo(a)pyrene-induced lung cancer mice model.
Targeting the specific molecular proteins or genes which are responsible for the suppression of cancer growth is currently an emerging molecular method to treat cancer. ATRA treatment is now considered as a molecular targeted therapy for many cancers. As ATRA exhibits its therapeutic effect through its receptors, this study was focused to investigate the effect and action of liposomal-ATRA treatment on the expression of RAR-β protein which is also a tumor suppressor. The liposomal-ATRA was developed with cationic DOTAP and cholesterol by thin-film formation method. The benzo(a)pyrene(50 mg/kg b.wt)-induced mice were treated with free and liposomal-ATRA(0.60 mg/kg b.wt). The RAR-β protein expression in lung and liver tissue samples were analyzed by immunohistochemistry (IHC) and western blotting (WB) on the 30th and 120th days. Almost nil expression of RAR-β protein was observed in B(a)P cancer control and liposome alone-treated groups. A comparatively elevated expression was seen in the free ATRA-treated group (IHC score-2+ in lung on the 120th day with band density of 14.46 ± 1.24% in WB). Interestingly, the liposomal-ATRA treatment demonstrated a significantly (p ≤ 0.01) higher RAR-β expression in lung (35.20 ± 3.398% band intensity and score 4+ in the 120th day) than that of in ATRA alone treatment. This study results indicate that the RAR-β protein expression was suppressed by B(a)P during cancer induction even on the 30th day itself. The treatment could reactivate the suppression and the lipo-ATRA treatment could show significantly higher RAR-β expression on the 120th day, which implies that it accumulated more ATRA in target site and sustained it for enhanced action. Topics: Animals; Antineoplastic Agents; Benzo(a)pyrene; Cholesterol; Disease Models, Animal; Fatty Acids, Monounsaturated; Liposomes; Liver; Lung; Lung Neoplasms; Male; Mice; Quaternary Ammonium Compounds; Receptors, Retinoic Acid; Tretinoin | 2019 |
Reduced RAR-β gene expression in Benzo(a)Pyrene induced lung cancer mice is upregulated by DOTAP lipo-ATRA treatment.
Molecular targeted therapy for specific genes is an emerging research. Retinoic Acid Receptor (RAR-β) is a key tumor suppressor which is found to be lost drastically during much cancer progression. We hence, analyzed the expression level of RAR-β gene during B(a)P induced lung cancer development in mice and studied the lung cancer targeted action of All Trans Retinoic Acid (ATRA) in DOTAP liposomal formulation. The effect of its treatment on lung cancer was determined by histopathological analysis. RAR-β gene expression was assessed by RT-PCR and qPCR. A distinct band for RAR-β gene (density - 0.5123 for lung and 0.5160 for liver) was observed in normal mice, whereas no visible band was observed in cancer induced group, indicating loss of RAR-β gene expression. Both ATRA and lipo-ATRA treated groups showed detectable RAR-β expression with relatively lesser density than the normal group. The expression was more intense in lipo-ATRA treatment (density-0.2973) compared with free ATRA treatment (density-0.1549) in lung tissues. The qPCR results also have highlighted a highly significant (p ≤ 0.01) variation RQ values between lipo-ATRA group (15.46 ± 1.54) and free ATRA group (7.58 ± 1.30) in lung tissue sample on 30th day. The mean RQ value for normal lung on 30th day was 20.86 ± 2.58 against the cancer control. The 120th day mice also showed the similar RAR-β expression pattern with further declined expression levels as there was no treatment given after 30 days. Interestingly, the lipo-ATRA treatment could show a highly significant (p ≤ 0.001) expression (12.00 ± 2.31) when compared with free ATRA treatment (3.31 ± 0.58) which implies that the lipo-ATRA formulation could result in sustained delivery of ATRA in target site. Histopathology of lung and liver on 120th day also revealed an effective therapeutic indication in lipo-ATRA treatment compared to free ATRA treatment due to lipo-ATRA's stealth property and it efficiently inhibited the metastasis to liver. These results revealed that the lipo-ATRA treatment has efficiently delivered ATRA into target site than free ATRA and in-turn it might have induced the expression of RAR-β gene or prevented loss of RAR-β gene in cancer animals. Topics: Animals; Antineoplastic Agents; Benzo(a)pyrene; Fatty Acids, Monounsaturated; Gene Expression; Liposomes; Liver; Lung; Lung Neoplasms; Mice; Quaternary Ammonium Compounds; Receptors, Retinoic Acid; Tretinoin; Up-Regulation | 2018 |
Induction of apoptosis in A549 human lung cancer cells by all-trans retinoic acid incorporated in DOTAP/cholesterol liposomes.
All-trans retinoic acid (ATRA) has been shown to exert anti-cancer activities in a number of types of cancer cells. However, it has been reported that many NSCLC exhibited resistance to ATRA treatment. In the present study, we hypothesized that intracellular delivery of ATRA would overcome the ATRA resistance in A549 cells. Here, we investigated the induction of apoptosis by ATRA incorporated in cationic liposomes composed of DOTAP/cholesterol in A549 human lung cancer cells, which are insensitive (resistant) to the growth inhibitory effects of ATRA. The zeta potentials of DOTAP/cholesterol liposomes and DSPC/cholesterol liposomes were about +50 and -3 mV. In A549 cells, [(3)H]ATRA incorporated in DOTAP liposomes showed increased cellular association compared with [(3)H]ATRA or [(3)H]ATRA incorporated in DSPC/cholesterol liposomes. ATRA incorporated in DOTAP/cholesterol liposomes showed much higher cytotoxic effects and apoptosis-inducing activity compared with ATRA or ATRA incorporated in DSPC/cholesterol liposomes. The enhanced expression of TIG3 mRNA tumor suppressor gene by ATRA incorporation into DOTAP/cholesterol liposomes might partly explain the mechanism of enhanced cytotoxicity and/or apoptosis. These observations provide valuable information to help in the design of differentiation therapy by ATRA in non-small cell lung carcinoma. Topics: Apoptosis; Cholesterol; Fatty Acids, Monounsaturated; Humans; Liposomes; Lung Neoplasms; Quaternary Ammonium Compounds; Tretinoin; Tumor Cells, Cultured | 2006 |
Inhibition of pulmonary metastasis in mice by all-trans retinoic acid incorporated in cationic liposomes.
The purpose of this study was to investigate whether all-trans retinoic acid (ATRA), an active metabolite of retinal, incorporated in cationic liposomes composed of 1,2 dioleoyl-3-trimethylammonium propane (DOTAP)/cholesterol could inhibit established metastatic lung tumors by delivery to the pulmonary tumor site after intravenous injection. After intravenous injection in mice, the highest lung accumulation of [(3)H]ATRA was observed by the DOTAP/cholesterol liposomes formulation, while other formulations including [(3)H]ATRA dissolved in serum or [(3)H]ATRA incorporated in distearoyl-l-phosphatidylcholine (DSPC)/cholesterol liposomes produced little accumulation in the lung. In mice used as a model of lung cancer metastasis, ATRA incorporated in DOTAP/cholesterol liposomes, injected intravenously, reduced the number of tumor nodules compared with free ATRA or ATRA incorporated in DSPC/cholesterol liposomes. These results suggest that ATRA incorporated in cationic liposomes would be an effective strategy for differentiation therapy of lung cancer metastasis. Topics: Animals; Antineoplastic Agents; Cations; Cell Line, Tumor; Cell Transplantation; Chemical and Drug Induced Liver Injury; Chemical Phenomena; Chemistry, Physical; Colonic Neoplasms; Drug Carriers; Fatty Acids, Monounsaturated; Injections, Intravenous; Liposomes; Lung; Lung Neoplasms; Male; Mice; Neoplasm Transplantation; Quaternary Ammonium Compounds; Rats; Rats, Inbred F344; Solubility; Tissue Distribution; Tretinoin | 2006 |