Page last updated: 2024-08-18

trehalose and maltodextrin

trehalose has been researched along with maltodextrin in 11 studies

Research

Studies (11)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (18.18)18.2507
2000's3 (27.27)29.6817
2010's4 (36.36)24.3611
2020's2 (18.18)2.80

Authors

AuthorsStudies
Boos, W; Klein, W1
Buera, MP; Lodato, P; Se govia de Huergo, M1
Imamura, H; Jeon, BS; Wakagi, T1
Boos, W; Hausner, W; Lee, SJ; Surma, M; Thomm, M1
Braun, R; Danner, H; Geppl, M; Neureiter, M; Strasser, S1
Hagura, Y; Kawai, K; Mikajiri, S; Teng, D1
Maidannyk, VA; Nurhadi, B; Roos, YH1
Ambros, S; Hofer, F; Kulozik, U1
Abraham, AL; Béguet-Crespel, F; Béra-Maillet, C; Blottière, HM; Burz, SD; Cénard, S; Chapron, A; David, O; Doré, J; Fonseca, F; Juste, C; Le Roux, K; Lepage, P; Levenez, F; Patrascu, O; Schwintner, C1
Ackerman, DS; Bruchez, MP; Campbell, PG; Jarvik, JW; Korkmaz, E; Ozdoganlar, OB; Telmer, CA; Yalcintas, EP1
Frey, A; Haindl, R; Kulozik, U; Neumayr, A1

Reviews

1 review(s) available for trehalose and maltodextrin

ArticleYear
The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus.
    Archives of microbiology, 2008, Volume: 190, Issue:3

    Topics: Amino Acid Sequence; Archaeal Proteins; ATP-Binding Cassette Transporters; Base Sequence; beta-Fructofuranosidase; Gene Expression Regulation, Archaeal; Gene Expression Regulation, Enzymologic; Genes, Regulator; Maltose; Models, Molecular; Molecular Sequence Data; Polysaccharides; Promoter Regions, Genetic; Protein Structure, Tertiary; Pyrococcus furiosus; Transcription Factors; Transcription, Genetic; Trehalose; Trisaccharides

2008

Other Studies

10 other study(ies) available for trehalose and maltodextrin

ArticleYear
Induction of the lambda receptor is essential for effective uptake of trehalose in Escherichia coli.
    Journal of bacteriology, 1993, Volume: 175, Issue:6

    Topics: Bacterial Outer Membrane Proteins; Biological Transport; Escherichia coli; Kinetics; Polysaccharides; Porins; Receptors, Virus; Trehalose

1993
Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices.
    Applied microbiology and biotechnology, 1999, Volume: 52, Issue:2

    Topics: Freeze Drying; Maltose; Polysaccharides; Povidone; Saccharomyces cerevisiae; Trehalose

1999
Molecular evolution of the ATPase subunit of three archaeal sugar ABC transporters.
    Biochemical and biophysical research communications, 2004, Jun-18, Volume: 319, Issue:1

    Topics: Adenosine Triphosphatases; Adenosine Triphosphate; Archaea; Archaeal Proteins; ATP-Binding Cassette Transporters; Bacterial Proteins; Biological Transport; Blotting, Southern; DNA; Dose-Response Relationship, Drug; Escherichia coli; Evolution, Molecular; Gene Transfer Techniques; Glycoside Hydrolases; Models, Genetic; Molecular Sequence Data; Multigene Family; Open Reading Frames; Plasmids; Polysaccharides; Thermococcus; Time Factors; Trehalose

2004
Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria.
    Journal of applied microbiology, 2009, Volume: 107, Issue:1

    Topics: Cell Culture Techniques; Cell Survival; Colony Count, Microbial; Cryopreservation; Cryoprotective Agents; Culture Media; Dehydration; Desiccation; Enterococcus faecium; Freeze Drying; Glucose; Lactobacillus plantarum; Polysaccharides; Sucrose; Temperature; Trehalose

2009
Stabilization of freeze-dried Lactobacillus paracasei subsp. paracasei JCM 8130
    Bioscience, biotechnology, and biochemistry, 2017, Volume: 81, Issue:4

    Topics: Animals; Cattle; Disaccharides; Food Microbiology; Freeze Drying; Humans; Lacticaseibacillus paracasei; Polysaccharides; Serum Albumin, Bovine; Sucrose; Temperature; Trehalose; Water

2017
Structural strength analysis of amorphous trehalose-maltodextrin systems.
    Food research international (Ottawa, Ont.), 2017, Volume: 96

    Topics: Food Handling; Food, Formulated; Freeze Drying; Humans; Infant Formula; Infant, Newborn; Kinetics; Models, Chemical; Molecular Structure; Polysaccharides; Rheology; Transition Temperature; Trehalose; Water

2017
Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19.
    Journal of applied microbiology, 2018, Volume: 125, Issue:4

    Topics: Freeze Drying; Lacticaseibacillus paracasei; Microbial Viability; Microwaves; Polysaccharides; Preservation, Biological; Sorbitol; Trehalose

2018
A Guide for Ex Vivo Handling and Storage of Stool Samples Intended for Fecal Microbiota Transplantation.
    Scientific reports, 2019, 06-20, Volume: 9, Issue:1

    Topics: Cryoprotective Agents; Fecal Microbiota Transplantation; Feces; Guidelines as Topic; Humans; Polysaccharides; Specimen Handling; Trehalose

2019
Analysis of In Vitro Cytotoxicity of Carbohydrate-Based Materials Used for Dissolvable Microneedle Arrays.
    Pharmaceutical research, 2020, Jan-15, Volume: 37, Issue:3

    Topics: Animals; Apoptosis; Carbohydrates; Carboxymethylcellulose Sodium; Cell Line; Cell Shape; Cell Survival; Drug Delivery Systems; Glucose; Humans; Hyaluronic Acid; Mice; Microinjections; Needles; Pharmaceutical Preparations; Polymers; Polysaccharides; Solubility; Trehalose

2020
Impact of cultivation strategy, freeze-drying process, and storage conditions on survival, membrane integrity, and inactivation kinetics of Bifidobacterium longum.
    Folia microbiologica, 2020, Volume: 65, Issue:6

    Topics: Bifidobacterium longum; Cell Culture Techniques; Culture Media; Desiccation; Freeze Drying; Humans; Hydrogen-Ion Concentration; Kinetics; Microbial Viability; Polysaccharides; Probiotics; Sorbitol; Temperature; Trehalose

2020