trehalose-6-6--dibehenate has been researched along with dimethyldioctadecylammonium* in 34 studies
2 review(s) available for trehalose-6-6--dibehenate and dimethyldioctadecylammonium
Article | Year |
---|---|
Immunocorrelates of CAF family adjuvants.
The development of the CAF family adjuvant was initiated around 20 years ago when Statens Serum Institut was preparing its first generation protein based recombinant subunit vaccine against tuberculosis for clinical testing, but realized that there were no clinically relevant adjuvants available that would support the strong CMI response needed. Since then the aim for the adjuvant research at Statens Serum Institut has been to provide adjuvants with distinct immunogenicity profiles correlating with protection for any given infectious disease. Two of the adjuvants CAF01 and CAF09 are currently being evaluated in human clinical trials. The purpose of this review is to give an overview of the immunocorrelates of those CAF adjuvants furthest in development. We further aim at giving an overview of the mechanism of action of the CAF adjuvants. Topics: Adjuvants, Immunologic; Animals; Glycolipids; Humans; Immunity, Cellular; Immunity, Humoral; Immunogenicity, Vaccine; Lipid A; Liposomes; Mice; Quaternary Ammonium Compounds; Th1 Cells; Th17 Cells; Th2 Cells; Tuberculosis Vaccines; Tuberculosis, Pulmonary | 2018 |
A case-study investigating the physicochemical characteristics that dictate the function of a liposomal adjuvant.
A range of particulate delivery systems have been considered as vaccine adjuvants. Of these systems, liposomes offer a range of advantages including versatility and flexibility in design format and their ability to incorporate a range of immunomodulators and antigens. Here we briefly outline research, from within our laboratories, which focused on the systematic evaluation of cationic liposomes as vaccines adjuvants. Our aim was to identify physicochemical characteristics that correlate with vaccine efficacy, with particular consideration of the interlink between depot-forming action and immune responses. A variety of parameters were investigated and over a range of studies we have confirmed that cationic liposomes, based on dimethyldioctadecylammonium bromide and trehalose 6,6'-dibehenate formed a depot at the injection site, which stimulates recruitment of antigen presenting cells to the injection site and promotes strong humoral and cell-mediated immune responses. Physicochemical factors which promote a strong vaccine depot include the combination of a high cationic charge and electrostatic binding of the antigen to the liposome system and the use of lipids with high transition temperatures, which form rigid bilayer vesicles. Reduction in vesicle size of cationic vesicles did not promote enhanced drainage from the injection site. However, reducing the cationic nature through substitution of the cationic lipid for a neutral lipid, or by masking of the charge using PEGylation, resulted in a reduced depot formation and reduced Th1-type immune responses, while Th2-type responses were less influenced. These studies confirm that the physicochemical characteristics of particulate-based adjuvants play a key role in the modulation of immune responses. Topics: Adjuvants, Immunologic; Chemical Phenomena; Chemistry, Pharmaceutical; Delayed-Action Preparations; Glycolipids; Humans; Liposomes; Quaternary Ammonium Compounds; Static Electricity; Vaccination | 2013 |
32 other study(ies) available for trehalose-6-6--dibehenate and dimethyldioctadecylammonium
Article | Year |
---|---|
Adsorption of protein antigen to the cationic liposome adjuvant CAF®01 is required for induction of Th1 and Th17 responses but not for antibody induction.
The degree of antigen adsorption to adjuvants in subunit vaccines may significantly influence the immune responses they induce upon vaccination. Commonly used approaches for studying how the level of adsorption affects the induction of antigen-specific immune responses include (i) using adjuvants with different abilities to adsorb antigens, and (ii) comparing different antigens selected based on their ability to adsorb to the adjuvant. A weakness of these approaches is that not only the antigen adsorption level is varied, but also other important functional factors such as adjuvant composition and/or the B/T cell epitopes, which may affect immunogenicity. Hence, we investigated how changing the adsorption capabilities of a single antigen to an adjuvant influenced the vaccine-induced immune responses. The model antigen lysozyme, which displays a positive net charge at physiological pH due to an isoelectric point (pI) of 11, was succinylated to different extents, resulting in a reduction of the pI value to 4.4-5.9, depending on the degree of succinylation. A pronounced inverse correlation was found between the pI value of the succinylated lysozyme analogues and the degree of adsorption to a cationic liposomal adjuvant consisting of dimethyldioctadecylammonium bromide (DDA) and trehalose dibehenate (TDB) (CAF®01). Furthermore, increased adsorption to this adjuvant correlated directly with the magnitude of lysozyme-specific Th1/Th17 immune responses induced by the vaccine in mice, while there was an inverse correlation with antibody induction. However, high lysozyme-specific antibody titers were induced with an increased antigen dose, even upon vaccination with a strongly adsorbed succinylated lysozyme analogue. Hence, these data illustrate that the degree of lysozyme adsorption to CAF®01 strongly affects the quality of the resulting immune responses. Topics: Adjuvants, Immunologic; Adsorption; Animals; Antigens; Cations; Female; Glycolipids; Immunogenicity, Vaccine; Liposomes; Mice; Models, Animal; Muramidase; Quaternary Ammonium Compounds; Th1 Cells; Th17 Cells; Vaccines, Subunit | 2021 |
Combinational PRR Agonists in Liposomal Adjuvant Enhances Immunogenicity and Protective Efficacy in a Tuberculosis Subunit Vaccine.
Topics: Adjuvants, Immunologic; Animals; CD4-Positive T-Lymphocytes; Cytokines; Disease Models, Animal; Drug Compounding; Female; Glycolipids; Host-Pathogen Interactions; Immunogenicity, Vaccine; Lipid A; Liposomes; Lung; Mice, Inbred C57BL; Mycobacterium tuberculosis; Quaternary Ammonium Compounds; Receptors, Pattern Recognition; Time Factors; Tuberculosis Vaccines; Tuberculosis, Pulmonary; Vaccination; Vaccines, Subunit; Virulence | 2020 |
Enhancement of the effect of BCG vaccine against tuberculosis using DDA/TDB liposomes containing a fusion protein of HspX, PPE44, and EsxV.
Tuberculosis has been a major health problem worldwide for years; therefore, it is important to develop and produce an effective vaccine against this disease. In this study, the immunogenicity of Mycobacterium tuberculosis fusion protein (FP) encapsulated in liposomes containing DDA/TDB was evaluated. The FP was expressed in E. coli BL21 and encapsulated in liposomal formulations. Three weeks after the last subcutaneous immunization, IFN-γ, IL-4, IL-17, and IL-12 in spleen cell culture supernatants, and IgG2a, IgG1, and IgG2b titres in sera were measured. The greatest IFN-γ and IL-12 interleukin concentrations were observed in the DDA/TDB/CHOL liposomes containing the FP. Initial injection with BCG improved the efficacy of the DDA/TDB/CHOL/FP vaccine. The IgG2a/IgG1 ratio was also high in the DDA/TDB/CHOL/FP group; furthermore, the IgG2a/IgG1 ratio was increased in the BCG-primed, DDA/TDB/CHOL/FP-boosted group, indicating induction of a cellular immune response. Our study showed that the FP-containing DDA/TDB/CHOL liposomes induced a Th1 response. However, the groups that first received BCG and then DDA/TDB/CHOL/FP had the greatest Th1 response in terms of IFN-γ and IL-12 production of all the groups. This suggests that these formulations enhance the BCG vaccine's effectiveness. Topics: Animals; Antigens, Bacterial; Bacterial Proteins; BCG Vaccine; Cytokines; Glycolipids; Liposomes; Mice; Quaternary Ammonium Compounds; Tuberculosis; Virulence Factors | 2019 |
A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522.
Induction of mucosal immunity with vaccines is attractive for the immunological protection against pathogen entry directly at the site of infection. An example is infection with Chlamydia trachomatis (Ct), which is the most common sexually transmitted infection in the world, and there is an unmet medical need for an effective vaccine. A vaccine against Ct should elicit protective humoral and cell-mediated immune (CMI) responses in the genital tract mucosa. We previously designed an antibody- and CMI-inducing adjuvant based on poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles modified with the cationic surfactant dimethyldioctadecylammonium bromide and the immunopotentiator trehalose-6,6'-dibehenate. Here we show that immunization with these lipid-polymer hybrid nanoparticles (LPNs) coated with the mucoadhesive polymer chitosan enhances mucosal immune responses. Glycol chitosan (GC)-modified LPNs were engineered using an oil-in-water single emulsion solvent evaporation method. The nanoparticle design was optimized in a highly systematic way by using a quality-by-design approach to define the optimal operating space and to gain maximal mechanistic information about the GC coating of the LPNs. Cryo-transmission electron microscopy revealed a PLGA core coated with one or several concentric lipid bilayers. The GC coating of the surface was identified as a saturable, GC concentration-dependent increase in particle size and a reduction of the zeta-potential, and the coating layer could be compressed upon addition of salt. Increased antigen-specific mucosal immune responses were induced in the lungs and the genital tract with the optimized GC-coated LPN adjuvant upon nasal immunization of mice with the recombinant Ct fusion antigen CTH522. The mucosal responses were characterized by CTH522-specific IgG/IgA antibodies, together with CTH522-specific interferon γ-producing Th1 cells. This study demonstrates that mucosal administration of CTH522 adjuvanted with chitosan-coated LPNs represents a promising strategy to modulate the magnitude of mucosal vaccine responses. Topics: Adjuvants, Immunologic; Administration, Intranasal; Animals; Antibodies, Bacterial; Antigens, Bacterial; Chitosan; Chlamydia trachomatis; Female; Glycolipids; Immunity, Mucosal; Immunoglobulin A; Immunoglobulin G; Lung; Mice, Inbred C57BL; Nanoparticles; Quaternary Ammonium Compounds; Recombinant Fusion Proteins; Vagina | 2018 |
Lipid conjugation of TLR7 agonist Resiquimod ensures co-delivery with the liposomal Cationic Adjuvant Formulation 01 (CAF01) but does not enhance immunopotentiation compared to non-conjugated Resiquimod+CAF01.
Pattern recognition receptors, including the Toll-like receptors (TLRs), are important in the induction and activation of two critical arms of the host defence to pathogens and microorganisms: the rapid innate immune response (as characterised by the production of Th1 promoting cytokines and type 1 interferons) and the adaptive immune response. Through this activation, ligands and agonists of TLRs can enhance immunotherapeutic efficacy. Resiquimod is a small (water-soluble) agonist of the endosome-located Toll-like receptors 7 and 8 (TLR7/8). However due to its molecular attributes it rapidly distributes throughout the body after injection. To circumvent this, these TLR agonists can be incorporated within delivery systems, such as liposomes, to promote the co-delivery of both antigen and agonists to antigen presenting cells. In this present study, resiquimod has been chemically conjugated to a lipid to form a lipid-TLR7/8 agonist conjugate which can be incorporated within immunogenic cationic liposomes composed of dimethyldioctadecylammonium bromide (DDA) and the immunostimulatory glycolipid trehalose 6,6' - dibehenate (TDB). This DDA:TDB-TLR7/8 formulation offers similar vesicle characteristics to DDA:TDB (size and charge) and offers high retention of both resiquimod and the electrostatically adsorbed TB subunit antigen Ag85B-ESAT6-Rv2660c (H56). Following immunisation through the intramuscular (i.m.) route, these cationic DDA:TDB-TLR7/8 liposomes form a vaccine depot at the injection site. However, immunisation studies have shown that this biodistribution does not translate into notably increased antibody nor Th1 responses at the spleen and draining popliteal lymph node compared to DDA:TDB liposomes. This work demonstrates that the conjugation of TLR7/8 agonists to cationic liposomes can promote co-delivery but the immune responses stimulated do not merit the added complexity considerations of the formulation. Topics: Adjuvants, Immunologic; Animals; Female; Glycolipids; Imidazoles; Lipids; Liposomes; Mice, Inbred BALB C; Quaternary Ammonium Compounds; Toll-Like Receptor 7; Vaccines | 2018 |
Adjuvants Based on Synthetic Mycobacterial Cord Factor Analogues: Biophysical Properties of Neat Glycolipids and Nanoself-Assemblies with DDA.
Synthetic mycobacterial cord factor analogues, e.g., trehalose 6,6'-dibehenate (TDB), are highly promising adjuvants due to their strong immunopotentiating capabilities, but their biophysical properties have remained poorly characterized. Here, we report the synthesis of an array of synthetic TDB analogues varying in acyl chain length, degree of acylation, and headgroup display, which was subjected to biophysical characterization of neat nondispersed self-assembled nanostructures in excess buffer and as aqueous dispersions with cationic dimethyldioctadecylammonium (DDA) bromide. The array comprised trehalose mono- (TMX) and diester (TDX) analogues with symmetrically shortened acyl chains [denoted by X: arachidate (A), stearate (S), palmitate (P), myristate (Myr), and laurate (L)] and an analogue with a short hydrophilic polyethylene glycol (PEG) linker inserted between the trehalose headgroup of TDS and the acyl chains (PEG-TDS). All dispersions were liposomes, but in contrast to the colloidally stable and highly cationic TDX-containing liposomes, the zeta-potential was significantly reduced for DDA/TMX and DDA/PEG-TDS liposomes, suggesting a charge-shielding effect, which compromises the colloidal stability. An increased d-spacing was observed for the lamellar phase of neat TDB analogues in excess buffer (TDS < TMS < PEG-TDS), confirming that the charge shielding is caused by an extended molecular configuration of the more flexible headgroup. Differential scanning calorimetry showed highly cooperative phase transitions for all tested dispersions albeit the monoesters destabilized the lipid bilayers. Langmuir experiments demonstrated that incorporation of TDXs and PEG-TDS stabilized DDA monolayers due to improved hydrogen bonding and reduced intermolecular repulsions. In conclusion, data suggest that the DDA/TDS dispersions exhibit favorable physicochemical properties rendering these DDA/TDS liposomes an attractive vaccine adjuvant, and they emphasize that not only the receptor binding and immune activation but also the biophysical properties of immunopotentiator formulations should be collectively considered when designing adjuvants with optimal safety, efficacy, and storage stability. Topics: Adjuvants, Pharmaceutic; Calorimetry, Differential Scanning; Cord Factors; Glycolipids; Liposomes; Mycobacterium; Polyethylene Glycols; Quaternary Ammonium Compounds | 2017 |
Correlating liposomal adjuvant characteristics to in-vivo cell-mediated immunity using a novel Mycobacterium tuberculosis fusion protein: a multivariate analysis study.
In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis.. The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ).. While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6.. This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design. Topics: Adjuvants, Immunologic; Animals; Bacterial Proteins; Cytokines; Female; Glycolipids; Immunity, Cellular; Immunoglobulins; Liposomes; Mice, Inbred C57BL; Multivariate Analysis; Mycobacterium tuberculosis; Phosphatidylcholines; Quaternary Ammonium Compounds; Vaccines | 2015 |
Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach.
The purpose of this study was to design a novel and versatile adjuvant intended for mucosal vaccination based on biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with the cationic surfactant dimethyldioctadecylammonium (DDA) bromide and the immunopotentiator trehalose-6,6'-dibehenate (TDB) (CAF01) to tailor humoral and cellular immunity characterized by antibodies and Th1/Th17 responses. Such responses are important for the protection against diseases caused by intracellular bacteria such as Chlamydia trachomatis and Mycobacterium tuberculosis. The hybrid NPs were engineered using an oil-in-water single emulsion method and a quality-by-design approach was adopted to define the optimal operating space (OOS). Four critical process parameters (CPPs) were identified, including the acetone concentration in the water phase, the stabilizer [polyvinylalcohol (PVA)] concentration, the lipid-to-total solid ratio, and the total concentration. The CPPs were linked to critical quality attributes consisting of the particle size, polydispersity index (PDI), zeta-potential, thermotropic phase behavior, yield and stability. A central composite face-centered design was performed followed by multiple linear regression analysis. The size, PDI, enthalpy of the phase transition and yield were successfully modeled, whereas the models for the zeta-potential and the stability were poor. Cryo-transmission electron microscopy revealed that the main structural effect on the nanoparticle architecture is caused by the use of PVA, and two different morphologies were identified: i) A PLGA core coated with one or several concentric lipid bilayers, and ii) a PLGA nanoshell encapsulating lipid membrane structures. The optimal formulation, identified from the OOS, was evaluated in vivo. The hybrid NPs induced antibody and Th1/Th17 immune responses that were similar in quality and magnitude to the response induced by DDA/TDB liposomes, showing that the adjuvant properties of DDA/TDB are maintained in the PLGA hybrid matrix. This study demonstrates the complexity of formulation design for the engineering of a hybrid lipid-polymer nanoparticle adjuvant. Topics: Adjuvants, Immunologic; Drug Design; Glycolipids; Lactic Acid; Microscopy, Electron, Transmission; Nanoparticles; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Quaternary Ammonium Compounds; Surface-Active Agents | 2015 |
Effect of incorporating cholesterol into DDA:TDB liposomal adjuvants on bilayer properties, biodistribution, and immune responses.
Cholesterol is an abundant component of mammalian cell membranes and has been extensively studied as an artificial membrane stabilizer in a wide range of phospholipid liposome systems. In this study, the aim was to investigate the role of cholesterol in cationic liposomal adjuvant system based on dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) which has been shown as a strong adjuvant system for vaccines against a wide range of diseases. Packaging of cholesterol within DDA:TDB liposomes was investigated using differential scanning calorimetery and surface pressure-area isotherms of lipid monolayers; incorporation of cholesterol into liposomal membranes promoted the formation of a liquid-condensed monolayer and removed the main phase transition temperature of the system, resulting in an increased bilayer fluidity and reduced antigen retention in vitro. In vivo biodistribution studies found that this increase in membrane fluidity did not alter deposition of liposomes and antigen at the site of injection. In terms of immune responses, early (12 days after immunization) IgG responses were reduced by inclusion of cholesterol; thereafter there were no differences in antibody (IgG, IgG1, IgG2b) responses promoted by DDA:TDB liposomes with and without cholesterol. However, significantly higher levels of IFN-gamma were induced by DDA:TDB liposomes, and liposome uptake by macrophages in vitro was also shown to be higher for DDA:TDB liposomes compared to their cholesterol-containing counterparts, suggesting that small changes in bilayer mechanics can impact both cellular interactions and immune responses. Topics: Adjuvants, Immunologic; Animals; Calorimetry, Differential Scanning; Cholesterol; Female; Glycolipids; Humans; Immunization; Immunoglobulin G; Interferon-gamma; Lipid Bilayers; Liposomes; Macrophages; Membrane Fluidity; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Phase Transition; Phospholipids; Quaternary Ammonium Compounds; Spleen; Tissue Distribution | 2014 |
Th1 immune responses can be modulated by varying dimethyldioctadecylammonium and distearoyl-sn-glycero-3-phosphocholine content in liposomal adjuvants.
Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) combined with trehalose 6,6'-dibehenate (TDB) elicit strong cell-mediated and antibody immune responses; DDA facilitates antigen adsorption and presentation while TDB potentiates the immune response. To further investigate the role of DDA, DDA was replaced with the neutral lipid of distearoyl-sn-glycero-3-phosphocholine (DSPC) over a series of concentrations and these systems investigated as adjuvants for the delivery of Ag85B-ESAT-6-Rv2660c, a multistage tuberculosis vaccine.. Liposomal were prepared at a 5 : 1 DDA-TDB weight ratio and DDA content incrementally replaced with DSPC. The physicochemical characteristics were assessed (vesicle size, zeta potential and antigen loading), and the ability of these systems to act as adjuvants was considered.. As DDA was replaced with DSPC within the liposomal formulation, the cationic nature of the vesicles decreases as does electrostatically binding of the anionic H56 antigen (Hybrid56; Ag85B-ESAT6-Rv2660c); however, only when DDA was completed replaced with DSPC did vesicle size increase significantly. T-helper 1 (Th1)-type cell-mediated immune responses reduced. This reduction in responses was attributed to the replacement of DDA with DSPC rather than the reduction in DDA dose concentration within the formulation.. These results suggest Th1 responses can be controlled by tailoring the DDA/DSPC ratio within the liposomal adjuvant system. Topics: Adjuvants, Immunologic; Animals; Antigens; Cations; Female; Glycolipids; Immunity, Cellular; Liposomes; Mice; Mice, Inbred C57BL; Phosphatidylcholines; Quaternary Ammonium Compounds; Th1 Cells; Vaccines | 2014 |
The surface charge of liposomal adjuvants is decisive for their interactions with the Calu-3 and A549 airway epithelial cell culture models.
One of the main reasons for the unmet medical need for mucosal vaccines is the lack of safe and efficacious mucosal adjuvants. The cationic liposome-based adjuvant system composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) is a versatile adjuvant that has shown potential for mucosal vaccination via the airways. The purpose of this study was to investigate the importance of the liposomal surface charge on the interaction with lung epithelial cells. Thus, the cationic DDA in the liposomes was subjected to a step-wise replacement with the zwitterionic distearoylphosphatidylcholine (DSPC). The liposomes were tested with the model protein antigen ovalbumin for the mucosal deposition, the effect on cellular viability and the epithelial integrity by using the two cell lines A549 and Calu-3, representing cells from the alveolar and the bronchiolar epithelium, respectively. The Calu-3 cells were cultured under different conditions, resulting in epithelia with a low and a high mucus secretion, respectively. A significantly larger amount of lipid and ovalbumin was deposited in the epithelial cell layer and in the mucus after incubation with the cationic liposomes, as compared to incubation with the neutral liposomes, which suggests that the cationic charge is important for the delivery. The integrity and the viability of the cells without a surface-lining mucus layer were decreased upon incubation with the cationic formulations, whereas the mucus appeared to retain the integrity and viability of the mucus-covered Calu-3 cells. Our in vitro results thus indicate that DDA/TDB liposomes might be efficiently and safely used as an adjuvant system for vaccines targeting the mucus-covered epithelium of the upper respiratory tract and the conducting airways. Topics: Adjuvants, Immunologic; Adjuvants, Pharmaceutic; Cations; Cell Line, Tumor; Cell Survival; Epithelial Cells; Glycolipids; Humans; Lipids; Liposomes; Lung; Mucus; Ovalbumin; Phosphatidylcholines; Quaternary Ammonium Compounds; Respiratory Mucosa; Vaccines | 2014 |
Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.
Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Topics: Adjuvants, Immunologic; Animals; Cations; Desiccation; Drug Compounding; Female; Glycolipids; Lactose; Liposomes; Mannitol; Mice; Mice, Inbred C57BL; Powders; Quaternary Ammonium Compounds; Recombinant Fusion Proteins; Trehalose; Vaccines | 2013 |
Engineering of an inhalable DDA/TDB liposomal adjuvant: a quality-by-design approach towards optimization of the spray drying process.
The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB).. A quality by design (QbD) approach was applied to identify and link critical process parameters (CPPs) of the spray drying process to critical quality attributes (CQAs) using risk assessment and design of experiments (DoE), followed by identification of an optimal operating space (OOS). A central composite face-centered design was carried out followed by multiple linear regression analysis.. Four CQAs were identified; the mass median aerodynamic diameter (MMAD), the liposome stability (size) during processing, the moisture content and the yield. Five CPPs (drying airflow, feed flow rate, feedstock concentration, atomizing airflow and outlet temperature) were identified and tested in a systematic way. The MMAD and the yield were successfully modeled. For the liposome size stability, the ratio between the size after and before spray drying was modeled successfully. The model for the residual moisture content was poor, although, the moisture content was below 3% in the entire design space. Finally, the OOS was drafted from the constructed models for the spray drying of trehalose stabilized DDA/TDB liposomes.. The QbD approach for the spray drying process should include a careful consideration of the quality target product profile. This approach implementing risk assessment and DoE was successfully applied to optimize the spray drying of an inhalable DDA/TDB liposomal adjuvant designed for pulmonary vaccination. Topics: Adjuvants, Immunologic; Administration, Inhalation; Cations; Desiccation; Glycolipids; Liposomes; Particle Size; Quaternary Ammonium Compounds | 2013 |
Protein antigen adsorption to the DDA/TDB liposomal adjuvant: effect on protein structure, stability, and liposome physicochemical characteristics.
Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB).. The effect of surface adsorption to DDA/TDB liposomes on colloidal stability and protein physical stability/secondary structure was investigated by dynamic light scattering, circular dichroism, Fourier transform infrared spectroscopy and differential scanning calorimetry.. Bovine serum albumin and ovalbumin showed strong liposome adsorption, whereas lysozyme did not adsorb. Upon adsorption, bovine serum albumin and ovalbumin reduced the phase transition temperature and narrowed the gel-to-liquid phase transition of the liposomes implying interactions with the lipid bilayer. The protein-to-lipid ratio influenced the liposome colloidal stability to a great extent, resulting in liposome aggregation at intermediate ratios. However, no structural alterations of the model proteins were detected.. The antigen-to-lipid ratio is highly decisive for the aggregation behavior of DDA/TDB liposomes and should be taken into account, since it may have an impact on general vaccine stability and influence the choice of analytical approach for studying this system, also/especially at clinically relevant protein-to-lipid ratios. Topics: Adjuvants, Immunologic; Adsorption; Animals; Cattle; Colloids; Glycolipids; Liposomes; Muramidase; Ovalbumin; Phase Transition; Protein Stability; Protein Structure, Secondary; Quaternary Ammonium Compounds; Serum Albumin, Bovine | 2013 |
Pegylation of DDA:TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses.
The adjuvant efficacy of cationic liposomes composed of dimethyldioctadecylammonium bromide and trehalose dibehenate (DDA:TDB) is well established. Whilst the mechanism behind its immunostimulatory action is not fully understood, the ability of the formulation to promote a 'depot effect' is a consideration. The depot effect has been suggested to be primarily due to their cationic nature which results in electrostatic adsorption of the antigen and aggregation of the vesicles at the site of injection. The aim of the study was to further test this hypothesis by investigating whether sterically stabilising DDA:TDB with polyethylene glycol (PEG) reduces aggregation, and subsequently influences the formation of a depot at the site of injection. Results reported demonstrate that high (25%) levels of PEG was able to significantly inhibit the formation of a liposome depot and also severely limit the retention of antigen at the site, resulting in a faster drainage of the liposomes from the site of injection. This change in biodistribution profile was reflected in the immunisation response, where lower levels of IgG2b antibody and IFN-γ and higher level of IL-5 cytokine were found. Furthermore entrapping antigen within DDA:TDB liposomes did not improve antigen retention at the injection site compared surface adsorbed antigen. Topics: Adjuvants, Immunologic; Animals; Cell Proliferation; Female; Glycolipids; Interferon-gamma; Interleukin-5; Liposomes; Mice; Mice, Inbred BALB C; Phosphatidylethanolamines; Polyethylene Glycols; Quaternary Ammonium Compounds; Recombinant Fusion Proteins; Spleen; Th1 Cells; Th2 Cells; Vaccines | 2012 |
Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses.
Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes. Topics: Adjuvants, Immunologic; Animals; Antibodies; Cations; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Female; Glycolipids; Immunity, Cellular; Immunity, Humoral; Liposomes; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Ovalbumin; Quaternary Ammonium Compounds; Toll-Like Receptor 3; Toll-Like Receptor 9; Toll-Like Receptors; Vaccines | 2012 |
Manipulation of the surface pegylation in combination with reduced vesicle size of cationic liposomal adjuvants modifies their clearance kinetics from the injection site, and the rate and type of T cell response.
The mechanism behind the immunostimulatory effect of the cationic liposomal vaccine adjuvant dimethyldioctadecylammonium and trehalose 6,6'-dibehenate (DDA:TDB) has been linked to the ability of these cationic vesicles to promote a depot after administration, with the liposomal adjuvant and the antigen both being retained at the injection site. This can be attributed to their cationic nature, since reduction in vesicle size does not influence their distribution profile yet neutral or anionic liposomes have more rapid clearance rates. Therefore the aim of this study was to investigate the impact of a combination of reduced vesicle size and surface pegylation on the biodistribution and adjuvanticity of the formulations, in a bid to further manipulate the pharmacokinetic profiles of these adjuvants. From the biodistribution studies, it was found that with small unilamellar vesicles (SUVs), 10% PEGylation of the formulation could influence liposome retention at the injection site after 4 days, whilst higher levels (25mol%) of PEG blocked the formation of a depot and promote clearance to the draining lymph nodes. Interestingly, whilst the use of 10% PEG in the small unilamellar vesicles did not block the formation of a depot at the site of injection, it did result in earlier antibody response rates and switch the type of T cell responses from a Th1 to a Th2 bias suggesting that the presence of PEG in the formulation not only control the biodistribution of the vaccine, but also results in different types of interactions with innate immune cells. Topics: Animals; Cations; Cell Proliferation; Cytokines; Drug Carriers; Female; Glycolipids; Immunoglobulin G; Injections, Intramuscular; Liposomes; Metabolic Clearance Rate; Mice; Mice, Inbred C57BL; Particle Size; Polyethylene Glycols; Quaternary Ammonium Compounds; Recombinant Fusion Proteins; Spleen; Surface Properties; T-Lymphocytes; Tuberculosis Vaccines | 2012 |
Incorporation of the TLR4 agonist monophosphoryl lipid A into the bilayer of DDA/TDB liposomes: physico-chemical characterization and induction of CD8+ T-cell responses in vivo.
The combination of delivery systems like cationic liposomes and immunopotentiators such as Toll-like receptor (TLR) ligands is a promising approach for rational vaccine adjuvant design. The purpose of this study was to investigate how the incorporation of the poorly soluble TLR4 agonist monophosphoryl lipid A (MPL) into cationic liposomes based on dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) influenced the physicochemical and immunological properties of the liposomes.. The DDA/TDB/MPL liposomes were characterized with regard to particle size, poly dispersity, surface charge, stability and thermodynamic properties. The adjuvant formulations were tested in vivo in mice using ovalbumin (OVA) as model antigen.. Integration of MPL into the bilayer structure of DDA/TDB liposomes was evident from a decreased phase transition temperature, an improved membrane packing, and a reduction in surface charge. The particle size and favorable liposome storage stability were not affected by MPL. In mice, DDA/TDB/MPL liposomes induced an antigen-specific CD8(+) T-cell response and a humoral response.. Enhancing the solubility of MPL by inclusion into the bilayer of DDA/TDB liposomes changes the membrane characteristics of the adjuvant system and provides the liposomes with CD8(+) T-cell inducing properties without compromising humoral responses. Topics: Animals; CD8-Positive T-Lymphocytes; Chemical Phenomena; Female; Glycolipids; Lipid A; Lipid Bilayers; Liposomes; Lymphocyte Activation; Mice; Mice, Inbred C57BL; Quaternary Ammonium Compounds; Toll-Like Receptor 4 | 2011 |
Immunity by formulation design: induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method.
The combination of nucleic acid-based Toll-like receptor (TLR)-3 or TLR9 agonists and cationic liposomes constitutes an effective vaccine adjuvant approach for eliciting CD8+ T-cell responses. However, complexing cationic liposomes and oppositely charged oligonucleotides generally results in highly unstable and heterogeneous formulations with limited clinical applicability. The aim of this study was to design, formulate, and carefully characterize a stable CD8-inducing adjuvant based on the TLR3 ligand polyinosinic-polycytidylic acid [poly(I:C)] incorporated into a cationic adjuvant system (CAF01) composed of dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB). For this purpose, a modified double emulsion solvent evaporation method was investigated for complexation of high amounts of anionic poly(I:C) to gel-state DDA/TDB liposomes. Addition of a volatile, water-miscible co-solvent (ethanol) to the outer water phase enabled preparation of colloidally stable liposomes, presumably by reducing the poly(I:C)-enhanced rigidity of the lipid bilayer. Cryo-transmission electron microscopy (TEM) revealed the formation of unilamellar as well as multilamellar liposomes, the latter suggesting that poly(I:C) is intercalated between the membrane bilayers in an onion-like structure. Finally, immunization of mice with the model antigen ovalbumin (OVA) and DDA/TDB/poly(I:C) liposomes induced a remarkably strong, antigen-specific CD8+ T-cell response, which was maintained for more than two months. Importantly, whereas injection of soluble poly(I:C) led to rapid production of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in serum, administration of poly(I:C) in complex with the cationic DDA/TDB liposomes prevented this non-specific systemic pro-inflammatory response. These data emphasize the importance of improving the quality of the vaccine formulation to indeed overcome some of the major obstacles for using CD8-inducing agents such as poly(I:C) in future subunit vaccines. Topics: Adjuvants, Immunologic; Animals; CD8-Positive T-Lymphocytes; Female; Glycolipids; Interferon Inducers; Liposomes; Mice; Mice, Inbred C57BL; Poly I-C; Quaternary Ammonium Compounds | 2011 |
Subunit vaccines: distearoylphosphatidylcholine-based liposomes entrapping antigen offer a neutral alternative to dimethyldioctadecylammonium-based cationic liposomes as an adjuvant delivery system.
The adjuvanticity of liposomes can be directed through formulation to develop a safe yet potent vaccine candidate. With the addition of the cationic lipid dimethyldioctadecylammonium bromide (DDA) to stable neutral distearoylphosphatidylcholine (DSPC):cholesterol (Chol) liposomes, vesicle size reduces while protein entrapment increases. The addition of the immunomodulator, trehalose 6,6-dibehenate (TDB) to either the neutral or cationic liposomes did not affect the physiochemical characteristics of these liposome vesicles. However, the protective immune response, as indicated by the amount of IFN-γ production, increases considerably when TDB is present. High levels of IFN-γ were observed for cationic liposomes; however, there was a marked reduction in IFN-γ release over time. Conversely, for neutral liposomes containing TDB, although the initial amount of IFN-γ was slightly lower than the cationic equivalent, the overall protective immune responses of these neutral liposomes were effectively maintained over time, generating good levels of protection. To that end, although the addition of DSPC and Chol reduced the protective immunity of DDA:TDB liposomes, relatively high protection was observed for the neutral counterpart, DSPC:Chol:TDB, which may offer an effective neutral alternative to the DDA:TDB cationic system, especially for the delivery of either zwitterionic (neutral) or cationic molecules or antigens. Topics: Adjuvants, Immunologic; Animals; Female; Glycolipids; Humans; Interferon-gamma; Liposomes; Mice; Mice, Inbred C57BL; Phosphatidylcholines; Quaternary Ammonium Compounds; Recombinant Fusion Proteins; Tuberculosis; Tuberculosis Vaccines; Vaccines, Subunit | 2011 |
The vesicle size of DDA:TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production.
The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 μm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-γ cytokine production from splenocytes and higher IL-1β at the site of injection. Topics: Adjuvants, Immunologic; Animals; Antibody Formation; Cells, Cultured; Glycolipids; Humans; Immunity, Cellular; Liposomes; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Particle Size; Quaternary Ammonium Compounds; Spleen | 2011 |
Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01.
Therapeutic immunization of HIV-1-infected individuals with or without anti-retroviral therapy is a new promising disease prevention. To induce a new cytotoxic T(CD8) lymphocyte (CTL) immunity during chronic HIV-1 infection 15 infrequently targeted but conserved HLA-supertype binding CTL epitopes from Gag, Pol, Nef, Env, Vpu and Vif were identified. The 15 T(CD8) and three T(CD4) helper peptides were GMP synthesised and formulated with a new adjuvant CAF01 which is a synthetic two-component liposomic adjuvant comprising the quaternary ammonium dimethyl-dioctadecyl-ammonium (DDA) and the immune modulator trehalose 6,6'-dibehenate (TDB). Using IFN-γ ELISPOT assay, T-cell immune induction by the vaccine was found to both CD4 and CD8 T-cell restricted peptides in HLA-A2 transgenic mice. Comprehensive toxicity studies of the CAF01 adjuvant-alone and together with different vaccines showed that CAF01 when tested at human dose levels was safe and well tolerated with only local inflammation at the site of injection and no systemic reactions. No pharmacological safety issues were observed in Beagle dogs. The HIV-1 vaccine toxicity study in the Göttingen Minipig(®) showed no systemic toxicity from five repetitive i.m. injections, each with a 2-week interval, of either the 18 HIV-1 peptide antigen solution (AFO18) or the AFO18-CAF01, in which the 18 HIV-1 peptides were formulated with the CAF01 adjuvant. Distinct inflammatory responses were observed in the injected muscles of the AFO18-CAF01 vaccine treated animals as a result of the immune stimulating effect of the adjuvant on the vaccine. The results of the toxicity studies provide optimism for phase I clinical trials evaluating the therapeutic HIV-1 T-cell vaccination approach using multiple subdominant minimal epitope peptides applying the novel cationic adjuvant CAF01. Topics: Adjuvants, Immunologic; AIDS Vaccines; Amino Acid Sequence; Animals; CD4-Positive T-Lymphocytes; Dogs; Drug Evaluation, Preclinical; Enzyme-Linked Immunospot Assay; Epitopes, T-Lymphocyte; Female; Glycolipids; HIV Infections; HIV-1; HLA-A2 Antigen; Immunity, Cellular; Immunization; Male; Mice; Mice, Knockout; Molecular Sequence Data; Peptides; Quaternary Ammonium Compounds; Swine; Swine, Miniature; T-Lymphocytes, Cytotoxic; Toxicity Tests | 2011 |
Administration route and carrier dependent effects on vaccine efficacy: implications for vaccine design.
Topics: Adjuvants, Immunologic; Animals; Antibody Formation; Cyclopropanes; Dendritic Cells; Female; Glycolipids; Guanosine; Humans; Quaternary Ammonium Compounds | 2011 |
Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen.
The mechanism behind the immunostimulatory effect obtained with the cationic liposomal vaccine adjuvant DDA:TDB remains unclear. One of the proposed hypotheses is the 'depot effect' in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. In the present study we devise a method to quantify the in vivo movement of liposomes and vaccine antigen using the radioisotopes H(3) and I(125) respectively. H(3)-labeled liposomes composed of dimethyldioctadecylammonium bromide (DDA) or an 8:1 molar ratio of DDA and trehalose 6,6-dibehenate (TDB) were administered in combination with I(125)-labeled Ag85B-ESAT-6 antigen, both via intramuscular and subcutaneous injection to mice. Furthermore characterisation of the liposomal system in simulated in vivo conditions was undertaken. Our results show that this dual-labeling technique is functional and reproducible. The administration of Ag85B-ESAT-6 without a liposomal carrier leads to rapid dissemination of the antigen from the site of injection. The administration of Ag85B-ESAT-6 together with either DDA or DDA:TDB liposomes however leads to deposition of the antigen at the injection site with detectable levels still being present 14 days post injection. Neither the incorporation of TDB nor the route of injection had any significant influence on the depot effect of DDA-based liposomes. The presence of TDB in DDA liposomes improves draining of liposomes to the lymph node in addition to increasing monocyte influx to the site of injection as highlighted by the intensive blue colouring of the injection site after pontamine blue staining of phagocytic cells in vivo. Our findings provide conclusive evidence for a cationic liposome-mediated deposition of antigen at the injection site with improved monocyte infiltration. Topics: Animals; Antigens, Bacterial; Bacterial Proteins; Bacterial Vaccines; Blood Proteins; Glycolipids; Liposomes; Mice; Mice, Inbred BALB C; Quaternary Ammonium Compounds | 2010 |
CAF01 liposomes as a mucosal vaccine adjuvant: In vitro and in vivo investigations.
Mucosal administration of vaccines has many advantages compared to parenteral vaccination. Needle-free mucosal vaccination would be easily applicable, target the vaccine to the entry point of many pathogens, and reduce the risk of infection with other pathogens during vaccination as compared to invasive methods. CAF01 is a novel liposome-based vaccine adjuvant with remarkable immunostimulatory activity. The potential of CAF01 liposomes as adjuvant for mucosal vaccines was investigated using the Calu-3 epithelial cell culture in vitro model. Thus, the mucosal permeability of the antigen as well as the epithelial integrity and the metabolic activity of the well-differentiated cells were investigated after exposure to CAF01. Finally, the adjuvant was tested for nasal administration in mice, combined with an influenza vaccine. The results suggest that CAF01 enhanced transport of antigen through the mucus layer on Calu-3 cells, increasing the concentration of antigen in the cell layer, as well as the transport across the epithelial cells. Furthermore CAF01 was well tolerated by the Calu-3 cells and the in vivo studies demonstrated increased cell-mediated immunity (CMI) as well as humoral immune responses in mice after nasal application of the influenza vaccine when combined with CAF01. CAF01 is thus a promising adjuvant for mucosal delivery. Topics: Adjuvants, Immunologic; Animals; Cell Line, Tumor; Cell Survival; Electric Impedance; Epithelial Cells; Epithelium; Female; Glycolipids; Immunity, Mucosal; Immunoglobulin G; Influenza Vaccines; Interferon-gamma; Liposomes; Mannitol; Mice; Mice, Inbred BALB C; Ovalbumin; Permeability; Quaternary Ammonium Compounds; Spleen; T-Lymphocytes; Vaccines; Vaccines, Inactivated | 2010 |
Protein adsorption and displacement at lipid layers determined by total internal reflection fluorescence (TIRF).
In many drug delivery systems such as liposomes, the adsorption of interstitial proteins upon administration can have a huge effect on the elimination, release, and stability of the delivery system. For example, it is assumed that PEGylated liposomes prevent the adsorption of opsonins and thereby prolong the circulation time in vivo, and EMEA guidelines recommend that more than 80% of the protein antigen is adsorbed in the formulation of adjuvant systems. However, few methods exist to elucidate this protein adsorption. The present study indicates that total internal reflection fluorescence (TIRF) is a possible method to examine the adsorption and exchange of proteins at lipid surfaces. In the TIRF set-up, a lipid layer can be formed [exemplified with dimethyldioctadecylammonium bromide (DDA) and D-(+)-trehalose 6,6'-dibehenate (TDB)] whereafter protein (i.e., ovalbumin or an antigen, Ag85B-ESAT-6) is adsorbed, and these proteins can subsequently be displaced by the abundant interstitial protein (i.e., serum albumin). Topics: Adjuvants, Immunologic; Adsorption; Drug Delivery Systems; Fluorescence; Glycolipids; Lipids; Liposomes; Proteins; Quaternary Ammonium Compounds; Serum Albumin; Trehalose | 2009 |
A novel liposome-based adjuvant CAF01 for induction of CD8(+) cytotoxic T-lymphocytes (CTL) to HIV-1 minimal CTL peptides in HLA-A*0201 transgenic mice.
Specific cellular cytotoxic immune responses (CTL) are important in combating viral diseases and a highly desirable feature in the development of targeted HIV vaccines. Adjuvants are key components in vaccines and may assist the HIV immunogens in inducing the desired CTL responses. In search for appropriate adjuvants for CD8(+) T cells it is important to measure the necessary immunological features e.g. functional cell killing/lysis in addition to immunological markers that can be monitored by simple immunological laboratory methods.. We tested the ability of a novel two component adjuvant, CAF01, consisting of the immune stimulating synthetic glycolipid TDB (Trehalose-Dibehenate) incorporated into cationic DDA (Dimethyldioctadecylammonium bromide) liposomes to induce CD8(+) T-cell restricted cellular immune responses towards subdominant minimal HLA-A0201-restricted CTL epitopes from HIV-1 proteins in HLA-A*0201 transgenic HHD mice. CAF01 has an acceptable safety profile and is used in preclinical development of vaccines against HIV-1, malaria and tuberculosis.. We found that CAF01 induced cellular immune responses against HIV-1 minimal CTL epitopes in HLA-A*0201 transgenic mice to levels comparable with that of incomplete Freund's adjuvant. Topics: Adjuvants, Immunologic; Animals; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Epitopes; Freund's Adjuvant; Glycolipids; HIV-1; HLA-A Antigens; HLA-A2 Antigen; Humans; Liposomes; Mice; Mice, Transgenic; Quaternary Ammonium Compounds; T-Lymphocytes; T-Lymphocytes, Cytotoxic; T-Lymphocytes, Helper-Inducer | 2009 |
NIR transmission spectroscopy for rapid determination of lipid and lyoprotector content in liposomal vaccine adjuvant system CAF01.
It is of crucial importance to determine the concentration of the different components in the formulation accurately, during production. In this respect, near-infrared (NIR) spectroscopy represents an intriguing alternative that offers rapid, non-invasive and non-destructive sample analysis. This method, combined with multivariate data analysis was successfully applied to quantify the total concentration of lipids in the liposomal CAF01 adjuvant, composed of the cationic surfactant dimethyldioctadecylammonium bromide (DDA) and the immunomodulator alpha,alpha'-trehalose 6,6'-dibehenate (TDB). The near-infrared (NIR) detection method was compared to a validated high-performance liquid chromatography (HPLC) method and a differential scanning calorimetry (DSC) analysis, and a blinded study with three different sample concentrations was performed, showing that there was no significant difference in the accuracy of the three methods. However, the NIR and DSC methods were more precise than the HPLC method. Also, with the NIR method it was possible to differentiate between various concentrations of trehalose added as cryo-/lyoprotector. These studies therefore suggest that NIR can be used for real-time process control analysis in the production of CAF01 liposomes. Topics: Adjuvants, Immunologic; Calorimetry, Differential Scanning; Chemistry, Pharmaceutical; Chromatography, High Pressure Liquid; Cryoprotective Agents; Glycolipids; Liposomes; Quaternary Ammonium Compounds; Reproducibility of Results; Spectroscopy, Near-Infrared; Technology, Pharmaceutical | 2008 |
Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements.
It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed.. Herein, we describe a cationic adjuvant formulation (CAF01) consisting of DDA as a delivery vehicle and synthetic mycobacterial cordfactor as immunomodulator. CAF01 primes strong and complex immune responses and using ovalbumin as a model vaccine antigen in mice, antigen specific cell-mediated- and humoral responses were obtained at a level clearly above a range of currently used adjuvants (Aluminium, monophosphoryl lipid A, CFA/IFA, Montanide). This response occurs through Toll-like receptor 2, 3, 4 and 7-independent pathways whereas the response is partly reduced in MyD88-deficient mice. In three animal models of diseases with markedly different immunological requirement; Mycobacterium tuberculosis (cell-mediated), Chlamydia trachomatis (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge.. CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection. Topics: Adjuvants, Immunologic; Animals; Cations; Chlamydia trachomatis; Female; Glycolipids; Humans; Liposomes; Malaria; Mice; Mice, Inbred C57BL; Mycobacterium; Mycobacterium tuberculosis; Plasmodium yoelii; Quaternary Ammonium Compounds; T-Lymphocytes; Vaccines | 2008 |
PLGA microspheres for the delivery of a novel subunit TB vaccine.
Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 microm range (1.50 +/- 0.13 microm), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres. Topics: Adjuvants, Immunologic; Animals; Chemistry, Pharmaceutical; Drug Carriers; Drug Delivery Systems; Emulsions; Female; Glycolipids; Iodine Radioisotopes; Isotope Labeling; Lactic Acid; Mice; Mice, Inbred C57BL; Microscopy, Electron, Scanning; Microspheres; Particle Size; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Quaternary Ammonium Compounds; Tuberculosis Vaccines | 2008 |
Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying.
Disaccharides are well-known reagents to protect biostructures like proteins and phospholipid-based liposomes during freezing and drying. We have investigated the ability of the two disaccharides trehalose and sucrose to stabilize a novel, non-phospholipid-based liposomal adjuvant composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) upon freeze-drying. The liposomes were freeze-dried using a human dose concentration containing 2.5 mg/ml DDA and 0.5 mg/ml TDB with varying concentrations of the two sugars. The influence on particle size upon rehydration was investigated using photon correlation spectroscopy (PCS) and the gel to fluid phase transition was examined by differential scanning calorimetry (DSC). Data revealed that concentrations above 211 mM trehalose protected and preserved DDA/TDB during freeze-drying, and the liposomes were readily rehydrated. Sucrose was less efficient as a stabilizer and had to be used in concentrations above 396 mM in order to obtain the same effect. Immunization of mice with the tuberculosis vaccine candidate Ag85B-ESAT-6 in combination with the trehalose stabilized adjuvant showed that freeze-dried DDA/TDB liposomes retained their ability to stimulate both a strong cell-mediated immune response and an antibody response. These findings show that trehalose at isotonic concentrations protects cationic DDA/TDB-liposomes during freeze-drying. Since this is not the case for liposomes based on DDA solely, we suggest that the protection is facilitated via direct interaction with the headgroup of TDB and a kosmotropic effect, whereas direct interaction with DDA plays a minor role. Topics: Cryoprotective Agents; Freeze Drying; Glycolipids; Liposomes; Membrane Fluidity; Membranes, Artificial; Phase Transition; Quaternary Ammonium Compounds; Temperature; Trehalose | 2007 |
Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6'-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses.
Incorporation of the glycolipid trehalose 6,6'-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4 degrees C and 25 degrees C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-gamma cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-gamma was identified as CD4 T cells. Topics: Acyltransferases; Adjuvants, Immunologic; Animals; Antibody Formation; Antigens, Bacterial; Bacterial Proteins; Calorimetry, Differential Scanning; Cord Factors; Cryoelectron Microscopy; Female; Glycolipids; Immunity, Cellular; Immunoglobulin G; Interferon-gamma; Light; Liposomes; Mice; Microscopy, Electron, Transmission; Mycobacterium tuberculosis; Quaternary Ammonium Compounds; Recombinant Fusion Proteins; Scattering, Radiation; Th1 Cells; Tuberculosis Vaccines | 2005 |