toremifene and afimoxifene

toremifene has been researched along with afimoxifene* in 11 studies

Other Studies

11 other study(ies) available for toremifene and afimoxifene

ArticleYear
New approach based on immunochemical techniques for monitoring of selective estrogen receptor modulators (SERMs) in human urine.
    Journal of pharmaceutical and biomedical analysis, 2018, Jul-15, Volume: 156

    Antiestrogenic compounds such as tamoxifen, toremifen and chlomifen are used illegally by athletes to minimize physical impacts such as gynecomastia resulting from the secondary effects of anabolic androgenic steroids, used to increase athletic efficiency unlawfully. The use of these compounds is banned by the World Anti-Doping Agency (WADA) and controls are made through analytical methodologies such as HPLC-MS/MS, which do not fulfil the sample throughput requirements. Moreover, compounds such as tamoxifen are also used to treat hormone receptor-positive breast cancer (ER + ).Therapeutic drug monitoring (TDM) of tamoxifen may also be clinically useful for guiding treatment decisions. An accurate determination of these drugs requires a solid phase extraction of patient serum followed by HPLC-MS/MS. In the context of an unmet need of high-throughput screening (HTS) and quantitative methods for antiestrogenic substances we have approached the development of antibodies and an immunochemical assay for the determination of these antiestrogenic compounds. The strategy applied has taken into consideration that these drugs are metabolized and excreted in urine as the corresponding 4-hydroxylated compounds. A microplate-based ELISA procedure has been developed for the analysis of these metabolites in urine with a LOD of 0.15, 0.16 and 0.63 μg/L for 4OH-tamoxifen, 4OH-toremifen and 4OH-clomifen, respectively, much lower than the MRPL established by WADA (20 μg/L).

    Topics: Breast Neoplasms; Chromatography, High Pressure Liquid; Clomiphene; Doping in Sports; Drug Monitoring; Enzyme-Linked Immunosorbent Assay; Female; Healthy Volunteers; High-Throughput Screening Assays; Humans; Selective Estrogen Receptor Modulators; Solid Phase Extraction; Tamoxifen; Tandem Mass Spectrometry; Testosterone Congeners; Toremifene

2018
A potential role for human UDP-glucuronosyltransferase 1A4 promoter single nucleotide polymorphisms in the pharmacogenomics of tamoxifen and its derivatives.
    Drug metabolism and disposition: the biological fate of chemicals, 2014, Volume: 42, Issue:9

    Tamoxifen (Tam) is a selective estrogen receptor modulator used to inhibit breast tumor growth. Tam can be directly N-glucuronidated via the tertiary amine group or O-glucuronidated after cytochrome P450-mediated hydroxylation. In this study, the glucuronidation of Tam and its hydroxylated and/or chlorinated derivatives [4-hydroxytamoxifen (4OHTam), toremifene (Tor), and 4-hydroxytoremifene (4OHTor)] was examined using recombinant human UDP-glucuronosyltransferases (UGTs) from the 1A subfamily and human hepatic microsomes. Recombinant UGT1A4 catalyzed the formation of N-glucuronides of Tam and its derivatives and was the most active UGT enzyme toward these compounds. Therefore, it was hypothesized that single nucleotide polymorphisms (SNPs) in the promoter region of UGT1A4 have the ability to significantly decrease the glucuronidation rates of Tam metabolites in the human liver. In vitro activity of 64 genotyped human liver microsomes was used to determine the association between the UGT1A4 promoter and coding region SNPs and the glucuronidation rates of Tam, 4OHTam, Tor, and 4OHTor. Significant decreases in enzymatic activity were observed in microsomes for individuals heterozygous for -163G/A and -217T/G. These alterations in glucuronidation may lead to prolonged circulating half-lives and may potentially modify the effectiveness of these drugs in the treatment of breast cancer.

    Topics: Genotype; Glucuronosyltransferase; Humans; Hydroxylation; Microsomes, Liver; Pharmacogenetics; Polymorphism, Single Nucleotide; Promoter Regions, Genetic; Tamoxifen; Toremifene

2014
Role and pharmacologic significance of cytochrome P-450 2D6 in oxidative metabolism of toremifene and tamoxifen.
    International journal of cancer, 2013, Mar-15, Volume: 132, Issue:6

    We investigated the in vitro metabolism and estrogenic and antiestrogenic activity of toremifene (TOR), tamoxifen (TAM) and their metabolites to better understand the potential effects of cytochrome P-450 2D6 (CYP2D6) status on the activity of these drugs in women with breast cancer. The plasma concentrations of TOR and its N-desmethyl (NDM) and 4-hydroxy (4-OH) metabolites during steady-state dosing with TOR were also determined. Unlike TOR, TAM and its NDM metabolite were extensively oxidized to 4-OH TAM and 4-OH-NDM TAM by CYP2D6, and the rate of metabolism was affected by CYP2D6 status. 4-OH-NDM TOR concentrations were not measurable at steady state in plasma of subjects taking 80 mg of TOR. Molecular modeling provided insight into the lack of 4-hydroxylation of TOR by CYP2D6. The 4-OH and 4-OH-NDM metabolites of TOR and TAM bound to estrogen receptor (ER) subtypes with fourfold to 30-fold greater affinity were 35- to 187-fold more efficient at antagonizing ER transactivation and had antiestrogenic potency that was up to 360-fold greater than their parent drugs. Our findings suggest that variations in CYP2D6 metabolic capacity may cause significant differences in plasma concentrations of active TAM metabolites (i.e., 4-OH TAM and 4-OH-NDM TAM) and contribute to variable pharmacologic activity. Unlike TAM, the clinical benefits in subjects taking TOR to treat metastatic breast cancer would not likely be subject to allelic variation in CYP2D6 status or affected by coadministration of CYP2D6-inhibiting medications.

    Topics: Adult; Cytochrome P-450 CYP2D6; Humans; Male; Oxidation-Reduction; Selective Estrogen Receptor Modulators; Structure-Activity Relationship; Tamoxifen; Toremifene

2013
Requirements for transcriptional regulation by the orphan nuclear receptor ERRgamma.
    Molecular and cellular endocrinology, 2004, Apr-30, Volume: 219, Issue:1-2

    Estrogen-related receptor gamma (ERRgamma) is an orphan nuclear receptor lacking identified natural ligands. We have addressed the requirements for ERRgamma-mediated gene regulation. ERRgamma transactivates constitutively reporter genes driven by ERR response elements (ERREs) or estrogen response elements (EREs). The activation depends on an intact DNA-binding domain (DBD) and activation function-2 (AF2). ERRgamma-mediated transactivation is further enhanced by peroxisome proliferator-activated receptor coactivator-1. Interestingly, ligand-binding domain (LBD) mutations predicted to either enlarge or diminish the putative ligand-binding pocket have no effect on the transcriptional activity implying that ERRgamma activity does not depend on any ligands. Antiestrogens 4OH-tamoxifen (4OHT) and 4-hydroxytoremifene (4OHtor) inhibit the ability of ERR to transactivate ERRE and ERE reporters. In contrast, ERRgamma activates transcription at AP-1 sites in the presence of 4OHT and 4OHtor. Thus, the transcriptional activity of ERRgamma seems not to require ligand binding but is modulated by binding of certain small synthetic ligands.

    Topics: Binding Sites; Cell Line; DNA-Binding Proteins; Genes, Reporter; Humans; Luciferases; Point Mutation; Protein Binding; Protein Structure, Secondary; Receptors, Cytoplasmic and Nuclear; Receptors, Estrogen; Tamoxifen; Toremifene; Transcription Factors; Transcriptional Activation

2004
Alpha-hydroxylation of tamoxifen and toremifene by human and rat cytochrome P450 3A subfamily enzymes.
    Chemical research in toxicology, 2003, Volume: 16, Issue:9

    An increased risk of developing endometrial cancer is observed in breast cancer patients treated with tamoxifen (TAM) and in healthy women undergoing TAM chemoprevention therapy. TAM-DNA adducts were detected in the endometrium of women taking TAM (Shibutani, S., et al. (2000) Carcinogenesis 21, 1461-1467) and are formed primarily through O-sulfonation of alpha-hydroxytamoxifen (alpha-OHTAM). To explore the genotoxicic mechanisms of TAM, TAM was incubated with one of multiple human cytochrome P450 enzymes, i.e., P450 1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, 3A7, 4A11, 4F2, 4F3A, or 4F3B, in a NADPH regenerating system, and the metabolites were identified using HPLC/UV analysis with authentic standards. Among the 18 human P450 enzymes, P450 3A4 generated a significant amount of alpha-OHTAM. When some rat P450 enzymes were examined, P450 3A2 also catalyzed alpha-hydroxylation of TAM. Similarly, human P450 3A4 and rat P450 3A1 and 3A2 converted toremifene (TOR, a chlorinated TAM analogue) to alpha-hydroxytoremifene (alpha-OHTOR). The formation of alpha-OHTAM and alpha-OHTOR by these P450 enzymes was confirmed by tandem mass spectroscopy. Only the P450 3A subfamily enzymes are able to alpha-hydroxylate TAM and TOR. Although the formation of alpha-OHTOR by these enzymes was much higher than that of alpha-OHTAM, TOR is known to be much less genotoxic than TAM. The results support our proposed mechanism that the lower genotoxicity of TOR is due to limited O-sulfonation of alpha-OHTOR by hydroxysteroid sulfotransferases, resulting in the poor formation of DNA adducts (Shibutani, S., et al. (2001) Cancer Res. 61, 3925-3931).

    Topics: Animals; Aryl Hydrocarbon Hydroxylases; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Deoxyguanine Nucleotides; Female; Humans; Hydroxylation; Mass Spectrometry; NADPH Oxidases; Rats; Tamoxifen; Toremifene

2003
Synthesis and reactivity of potential toxic metabolites of tamoxifen analogues: droloxifene and toremifene o-quinones.
    Chemical research in toxicology, 2001, Volume: 14, Issue:12

    Tamoxifen remains the endocrine therapy of choice in the treatment of all stages of hormone-dependent breast cancer. However, tamoxifen has been shown to increase the risk of endometrial cancer which has stimulated research for new effective antiestrogens, such as droloxifene and toremifene. In this study, the potential for these compounds to cause cytotoxic effects was investigated. One potential cytotoxic mechanism could involve metabolism of droloxifene and toremifene to catechols, followed by oxidation to reactive o-quinones. Another cytotoxic pathway could involve the oxidation of 4-hydroxytoremifene to an electrophilic quinone methide. Comparison of the amounts of GSH conjugates formed from 4-hydroxytamoxifen, droloxifene, and 4-hydroxytoremifene suggested that 4-hydroxytoremifene is more effective at formation of a quinone methide. However, all three substrates formed similar amounts of o-quinones. Both the tamoxifen-o-quinone and toremifene-o-quinone reacted with deoxynucleosides to give corresponding adducts. However, the toremifene-o-quinone was shown to be considerably more reactive than the tamoxifen-o-quinone in terms of both kinetic data as well as the yield and type of deoxynucleoside adducts formed. Since thymidine formed the most abundant adducts with the toremifene-o-quinone, sufficient material was obtained for characterization by (1)H NMR, COSY-NMR, DEPT-NMR, and tandem mass spectrometry. Cytotoxicity studies with tamoxifen, droloxifene, 4-hydroxytamoxifen, 4-hydroxytoremifene, and their catechol metabolites were carried out in the human breast cancer cell lines S30 and MDA-MB-231. All of the metabolites tested showed cytotoxic effects that were similar to the parent antiestrogens which suggests that o-quinone formation from tamoxifen, droloxifene, and 4-hydroxytoremifene is unlikely to contribute to their cytotoxicity. However, the fact that the o-quinones formed adducts with deoxynucleosides in vitro implies that the o-quinone pathway might contribute to the genotoxicity of the antiestrogens in vivo.

    Topics: Animals; Antineoplastic Agents; Benzoquinones; Breast Neoplasms; Cell Survival; Deoxyribonucleosides; DNA Adducts; Female; Glutathione; Indolequinones; Indoles; Microsomes, Liver; Quinones; Rats; Rats, Sprague-Dawley; Spectrometry, Mass, Electrospray Ionization; Tamoxifen; Toremifene; Tumor Cells, Cultured

2001
4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides.
    Chemical research in toxicology, 2000, Volume: 13, Issue:1

    Tamoxifen is widely prescribed for the treatment of hormone-dependent breast cancer, and it has recently been approved by the Food and Drug Administration for the chemoprevention of this disease. However, long-term usage of tamoxifen has been linked to increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. The resulting quinone methide has the potential to alkylate DNA and may initiate the carcinogenic process. To further probe the chemical reactivity and toxicity of such an electrophilic species, we have prepared the 4-hydroxytamoxifen quinone methide chemically and enzymatically, examined its reactivity under physiological conditions, and quantified its reactivity with GSH. Interestingly, this quinone methide is unusually stable; its half-life under physiological conditions is approximately 3 h, and its half-life in the presence of GSH is approximately 4 min. The reaction between 4-hydroxytamoxifen quinone methide and GSH appears to be a reversible process because the quinone methide GSH conjugates slowly decompose over time, regenerating the quinone methide as indicated by LC/MS/MS data. The tamoxifen GSH conjugates were detected in microsomal incubations with 4-hydroxytamoxifen; however, none were observed in breast cancer cell lines (MCF-7) perhaps because very little quinone methides is formed. Toremifene, which is a chlorinated analogue of tamoxifen, undergoes similar oxidative metabolism to give 4-hydroxytoremifene, which is further oxidized to the corresponding quinone methide. The toremifene quinone methide has a half-life of approximately 1 h under physiological conditions, and its rate of reaction in the presence of excess GSH is approximately 6 min. More detailed analyses have indicated that the 4-hydroxytoremifene quinone methide reacts with two molecules of GSH and loses chlorine to give the corresponding di-GSH conjugates. The reaction mechanism likely involves an episulfonium ion intermediate which may contribute to the potential cytotoxic effects of toremifene. Similar to what was observed with 4-hydroxytamoxifen, 4-hydroxytoremifene was metabolized to di-GSH conjugates in microsomal incubations at about 3 times the rate of 4-hydroxytamoxifen, although no conjugates were detected with MCF-7 cells. Finally, these data suggest that quinone

    Topics: Animals; Antineoplastic Agents, Hormonal; Breast Neoplasms; Cytochrome P-450 Enzyme System; Estrogen Receptor Modulators; Female; Glutathione; Humans; Hydroxylation; Indolequinones; Indoles; Mass Spectrometry; Oxidation-Reduction; Quinones; Rats; Rats, Sprague-Dawley; Tamoxifen; Toremifene; Tumor Cells, Cultured

2000
Anti-estrogens induce apoptosis of multiple myeloma cells.
    Blood, 1998, Sep-01, Volume: 92, Issue:5

    Previous studies have suggested that multiple myeloma (MM) cells express estrogen receptors (ER). In the present study, we characterized the effects of estrogen agonists and antagonists (anti-estrogens [AE]) on growth of MM cell lines and MM patient cells. In addition to antagonizing estrogen binding to ER, AE can trigger apoptosis. Hence, we also determined whether estrogens or AE altered MM cell survival. Immunoblotting showed that ER-alpha is expressed in 4 of 5 MM cell lines (ARH-77, RPMI 8226, S6B45, and U266, but not OCI-My-5 cells), as well as in freshly isolated MM cells from 3 of 3 patients. 17beta-estradiol (E2) did not significantly alter proliferation of MM cell lines or MM patient cells. In contrast, two structurally distinct AE, tamoxifen (TAM) and ICI 182,780 (ICI), significantly inhibited the proliferation of all 5 MM cell lines and MM cells from 2 of 2 patients (IC50, 2 to 4 micromol/L). Proliferation of these cell lines was also inhibited by the hydroxylated TAM derivative, 4-hydroxytamoxifen (4HTAM), although this derivative was less potent than TAM (IC50, 3 to 25 micromol/L). In contrast, the dehalogenated TAM derivative toremifene (TOR) did not inhibit MM cell proliferation. We next examined the effects of these agents on MM cell survival. TAM, ICI, and, to a lesser extent, 4HTAM and TOR triggered apoptosis in both ER-alpha-positive as well as ER-alpha-negative MM cell lines and patient MM cells, evidenced both by fluorescence-activated cell sorting (FACS) analysis using propidium iodide staining and the TUNEL assay. TAM-induced growth inhibition and apoptosis of ER-alpha-positive S6B45 MM cells was not blocked by coculture with excess E2. TAM-induced apoptosis of S6B45 MM cells was also unaffected by addition of exogenous interleukin-6. Importantly, both the inhibition of MM cell proliferation and the induction of MM cell apoptosis were achieved at concentrations of TAM (0.5 and 5.0 micromol/L) that did not significantly alter in vitro growth of normal hematopoietic progenitor cells. Similar plasma levels of TAM have been achieved using high-dose oral TAM therapy, with an acceptable toxicity profile. These studies therefore provide the rationale for trials to define the utility of AE therapy in MM.

    Topics: Apoptosis; Breast Neoplasms; Cell Division; Cell Survival; Coloring Agents; Estradiol; Estrogen Antagonists; Flow Cytometry; Fulvestrant; Hematopoietic Stem Cells; Humans; Immunoblotting; Multiple Myeloma; Propidium; Receptors, Estrogen; Tamoxifen; Toremifene; Tumor Cells, Cultured

1998
Clastogenic and aneugenic effects of tamoxifen and some of its analogues in hepatocytes from dosed rats and in human lymphoblastoid cells transfected with human P450 cDNAs (MCL-5 cells).
    Carcinogenesis, 1997, Volume: 18, Issue:2

    Tamoxifen and its analogues 4-hydroxytamoxifen, toremifene, 4-hydroxytoremifene, clomifene and droloxifene were tested for clastogenic effects in a human lymphoblastoid cell line (MCL-5) expressing elevated native CYP1A1 and containing transfected CYP1A2, CYP2A6, CYP2E1 and CYP3A4 and epoxide hydrolase and in a cell line containing only the viral vector (Ho1). MCL-5 or Ho1 cells were incubated with 4-hydroxytamoxifen, 4-hydroxytoremifene, clomifene or droloxifene and the incidence of micronuclei estimated. With MCL-5 cells there was an increase in micronuclei with 4-hydroxytamoxifen, 4-hydroxytoremifene and clomifene but not with droloxifene. With Ho1 cells only 4-hydroxytamoxifen and 4-hydroxytoremifene caused an increase in micronuclei. MCL-5 cells were incubated with tamoxifen, 4-hydroxytamoxifen, toremifene, droloxifene, clomifene or diethylstilbestrol (0.25-10 microg/ml) for 48 h and subjected to 3 h treatment with vinblastine (0.25 microg/ml) to arrest cells in metaphase. The incidence of cells with chromosomal numerical aberrations (aneuploidy) was increased in cells treated with tamoxifen, 4-hydroxytamoxifen, toremifene, clomifene and diethylstilbestrol but not droloxifene. The frequency of cells with structural abnormalities (excluding gaps) was increased in cells treated with tamoxifen and toremifene but not 4-hydroxytamoxifen, clomifene, droloxifene or diethylstilbestrol. The clastogenic activities of tamoxifen (35 mg/kg), toremifene (36.3 mg/kg), droloxifene (35.2 mg/kg) and diethylstilbestrol (25 mg/kg) were compared in groups of four female Wistar rats. Each chemical was dissolved in glycerol formal, administered as a single dose by gavage and hepatocytes isolated by collagenase perfusion 24 h later. The cells were cultured in the presence of epidermal growth factor (40 ng/ml) for 48 h, colchicine (10 microg/ml) being added for the final 3 h of incubation. At least 100 chromosomal spreads were examined from each animal for the presence of numerical and structural abnormalities. The incidences of aneuploidy following treatment were: tamoxifen 81%, toremifene 46%, droloxifene 9.6%, diethylstilbestrol 45.7%, vehicle control 5.3%. The incidences of chromosomal structural abnormalities excluding gaps were: tamoxifen 4.3%, toremifene 0.8%, droloxifene 0.5%, diethylstilbestrol 0.8%, control 0.5%. The incidence of chromosomal structural aberrations excluding gaps in the treated animals was not statistically significantly different from controls exce

    Topics: Aneuploidy; Animals; Anticarcinogenic Agents; Cell Line; Cell Nucleus; Clomiphene; Female; Humans; Liver; Lymphocytes; Micronucleus Tests; Rats; Rats, Wistar; Tamoxifen; Toremifene; Transfection

1997
Differential modulation of doxorubicin toxicity to multidrug and intrinsically drug resistant cell lines by anti-oestrogens and their major metabolites.
    British journal of cancer, 1993, Volume: 67, Issue:6

    The ability of the anti-oestrogens tamoxifen, toremifene and their 4-hydroxy and N-desmethyl metabolites to modify doxorubicin (dox) toxicity to intrinsically resistant and multidrug resistant cell lines was compared, using human breast and lung cancer, and Chinese hamster ovary cell lines. The anti-oestrogens significantly enhanced dox toxicity to multidrug resistant, P-glycoprotein-positive cell lines, but did not affect toxicity to intrinsically resistant, P-glycoprotein-negative cells. Modification was observed at clinically achievable anti-oestrogen concentrations. Toremifene and tamoxifen would therefore appear to be good candidates for in vivo studies as MDR modulating agents in selected patients with P-glycoprotein-positive tumours.

    Topics: Animals; Antibodies, Monoclonal; ATP Binding Cassette Transporter, Subfamily B, Member 1; Breast Neoplasms; Carrier Proteins; Cell Division; CHO Cells; Cricetinae; Doxorubicin; Drug Interactions; Drug Resistance; Drug Screening Assays, Antitumor; Epitopes; Estrogen Antagonists; Humans; Lung Neoplasms; Membrane Glycoproteins; Tamoxifen; Toremifene; Tumor Cells, Cultured

1993
In vitro and in vivo binding of toremifene and its metabolites in rat uterus.
    Journal of steroid biochemistry, 1990, Jun-22, Volume: 36, Issue:3

    The in vitro binding affinities of toremifene (TOR), 4-hydroxy toremifene (4-OH-TOR) and several other metabolites for the rat uterine cytosolic estrogen receptor were compared with those of tamoxifen (TAM) and 4-hydroxy tamoxifen (4-OH-TAM). Only small differences were observed and the binding affinities of both 4-hydroxy metabolites were similar to that of estradiol (E2). Uterine uptake and subcellular distribution of [3H]TOR and [3H]TAM were then compared at 1, 8 and 72 h after administration to castrated rats. The uptake and retention of both antiestrogens were similar at all times. In each case the amount of nuclear bound radioactivity declined to low levels at 8 and 72 h but the ratios of 4-OH-TAM/TAM and 4-OH-TOR/TOR determined by HPLC analysis increased dramatically at 72 h. The level of radioactivity in both plasma and uterine cytosol at 72 h was significantly higher following [3H]TAM administration. However, most of the radioactivity appeared to be in a conjugated form since it was not extractable with solvent. Finally, the ability of prior administration of each antiestrogen (100 mg/kg) to block uterine [3H]estradiol uptake was examined at 3 and 7 days. It was found that uterine wet weights were higher than control one week after administration of both compounds. Prior administration of TOR increased nuclear uptake of [3H]E2 whereas TAM had no effect. The results of these experiments suggest that toremifene and tamoxifen have very similar in vitro and in vivo binding properties but differences in metabolism exist that may be important.

    Topics: Animals; Estradiol; Estrogen Antagonists; Female; Kinetics; Rats; Rats, Inbred Strains; Tamoxifen; Toremifene; Tritium; Uterus

1990