Page last updated: 2024-08-24

topotecan and tacrolimus

topotecan has been researched along with tacrolimus in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (71.43)29.6817
2010's2 (28.57)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Collett, A; Hallifax, D; Tanianis-Hughes, J; Warhurst, G1
Andricopulo, AD; Moda, TL; Montanari, CA1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Chen, X; Lin, X; Skolnik, S; Wang, J1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Dai, Y; Gupta, A; Hebert, MF; Mao, Q; Ross, DD; Thummel, KE; Unadkat, JD; Vethanayagam, RR1

Reviews

1 review(s) available for topotecan and tacrolimus

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

6 other study(ies) available for topotecan and tacrolimus

ArticleYear
Predicting P-glycoprotein effects on oral absorption: correlation of transport in Caco-2 with drug pharmacokinetics in wild-type and mdr1a(-/-) mice in vivo.
    Pharmaceutical research, 2004, Volume: 21, Issue:5

    Topics: Administration, Oral; Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP-Binding Cassette Transporters; Biological Transport, Active; Caco-2 Cells; Cell Membrane Permeability; Humans; Intestinal Absorption; Mice; Mice, Knockout; Pharmacokinetics; Spectrometry, Mass, Electrospray Ionization

2004
Hologram QSAR model for the prediction of human oral bioavailability.
    Bioorganic & medicinal chemistry, 2007, Dec-15, Volume: 15, Issue:24

    Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2007
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:2

    Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity

2011
Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan.
    Cancer chemotherapy and pharmacology, 2006, Volume: 58, Issue:3

    Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Cyclosporine; Drug Resistance, Neoplasm; Female; Flow Cytometry; Humans; Immunosuppressive Agents; Mitoxantrone; Neoplasm Proteins; Sirolimus; Substrate Specificity; Tacrolimus; Topotecan

2006