tolbutamide has been researched along with 1,3-dipropyl-8-cyclopentylxanthine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (40.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
Illes, P; Nieber, K; Sevcik, J | 1 |
Bernardi, G; Calabresi, P; Centonze, D; Pisani, A | 1 |
Chen, SR; Li, DP; Pan, HL | 1 |
5 other study(ies) available for tolbutamide and 1,3-dipropyl-8-cyclopentylxanthine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |
Hypoxic changes in rat locus coeruleus neurons in vitro.
Topics: Adenosine; Animals; Cell Hypoxia; Cell Membrane; Electrophysiology; Enzyme Inhibitors; In Vitro Techniques; Locus Coeruleus; Male; Membrane Potentials; Neurons; Pons; Potassium Channels; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Sodium-Potassium-Exchanging ATPase; Tolbutamide; Xanthines | 1995 |
Endogenous adenosine mediates the presynaptic inhibition induced by aglycemia at corticostriatal synapses.
Topics: Adenosine; Animals; Caffeine; Cerebral Cortex; Corpus Striatum; Evoked Potentials; Glipizide; Glucose; Glutamic Acid; Hypoglycemic Agents; In Vitro Techniques; Membrane Potentials; Neurons; Potassium Channel Blockers; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Synapses; Theophylline; Tolbutamide; Xanthines | 1997 |
Adenosine inhibits paraventricular pre-sympathetic neurons through ATP-dependent potassium channels.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Adenosine; Analgesics; Animals; Bicuculline; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glyburide; Guanosine Diphosphate; In Vitro Techniques; KATP Channels; Male; Membrane Potentials; Neurons; Paraventricular Hypothalamic Nucleus; Patch-Clamp Techniques; Potassium Channel Blockers; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A1; Sodium Channel Blockers; Tetrodotoxin; Thionucleotides; Tolbutamide; Triazines; Triazoles; Xanthines | 2010 |