tn14003 and plerixafor

tn14003 has been researched along with plerixafor* in 4 studies

Reviews

1 review(s) available for tn14003 and plerixafor

ArticleYear
Potential of CXCR4 antagonists for the treatment of metastatic lung cancer.
    Expert review of anticancer therapy, 2011, Volume: 11, Issue:4

    Despite advances in surgery, chemotherapy and radiotherapy over the last decades, the death rate from lung cancer has remained largely unchanged, which is mainly due to metastatic disease. Because of the overall poor prognosis, new treatment strategies for lung cancer patients are urgently needed, and targeting CXCR4 constitutes such a novel, attractive strategy. Tumor cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokine receptors and adhesion molecules. Lung cancer cells express CXCR4 (CD184), a seven-transmembrane G-protein-coupled chemokine receptor. Stromal cells within the tumor microenvironment constitutively secrete stromal cell-derived factor-1 (SDF-1/CXCL12), the ligand for CXCR4. Activation of CXCR4 induces lung cancer cell migration and adhesion to stromal cells, which in turn provides growth- and drug-resistance signals to the tumor cells. CXCR4 antagonists, such as Plerixafor (AMD3100) and T140 analogues (TN14003/BKT140), can disrupt CXCR4-mediated tumor cell adhesion to stromal cells and sensitize lung cancer cells to cytotoxic drugs. Therefore, targeting the CXCR4-CXCL12 axis is a novel, attractive therapeutic approach in small-cell lung cancer and non-small-cell lung cancer. In this article, we summarize data about the cellular and molecular microenvironment in small-cell lung cancer and non-small-cell lung cancer, as well as the role of CXCR4 in tumor-stroma crosstalk. In addition, we review the current status of the preclinical and clinical development of CXCR4 antagonists.

    Topics: Animals; Antineoplastic Agents; Benzylamines; Chemokine CXCL12; Cyclams; Heterocyclic Compounds; Humans; Lung Neoplasms; Neoplasm Metastasis; Peptides; Receptors, CXCR4; Tumor Microenvironment

2011

Other Studies

3 other study(ies) available for tn14003 and plerixafor

ArticleYear
The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs, type II collagen, and aggrecan levels in articular cartilage of guinea pigs.
    Journal of orthopaedic surgery and research, 2020, May-29, Volume: 15, Issue:1

    To explore the possibility and mechanism of targeted blocking SDF-1/CXCR4 signaling pathway using three antagonists TN14003, T140, and AMD3100 in vivo, and to investigate the function of three antagonists in delay degeneration process of articular cartilage.. Ninety-six male Duncan-Hartley guinea pigs (6 months old) were divided into groups A, B, C, and D randomly. Alzet trace pump was implanted in the back subcutaneous tissue of pigs in group A, and TN14003 with concentration of 180 μg/ml was pumped every day. Alzet trace pump was implanted in the back subcutaneous tissue of pigs in group B, and T140 with concentration of 180 μg/ml was pumped every day. Alzet trace pump was implanted in the back subcutaneous tissue of pigs in group C, and AMD3100 with concentration of 180 μg/ml was pumped every day. Hartley guinea pigs in group D remained untreated as the blank control group. At 2, 4, 6, 8, 10, and 12 weeks of treatment, 5 to 8 animals in each group were randomly chosen for blood collection via cardiac puncture. SDF-1 content using enzyme-linked immunosorbent assay (ELISA). At 12 weeks, all guinea pigs were sacrificed by injecting pentobarbital sodium (30 mg/kg) into the peritoneal cavity. Cartilages from the tibial plateau in each group were harvested for PCR testing and western blot analysis. SPSS19.0 was used for data analysis.. Result of ELISA: the serum levels of SDF-1 of groups A, B, and C decreased gradually with time. Significant drop of SDF-1 level was seen in group A while increased SDF-1 was shown in group D. At the same time, the serum levels of SDF-1 of the group A were significantly lower than that of group B; those of group B were significantly lower than that of group C, which was significantly lower than that of group D, and their difference is statistically significant (P < 0.05). Real time quantitative PCR result: The mRNA levels of MMPs in group A were significantly lower than group B, and those of group B were significantly lower than group C, which was significantly lower than group D, and there was statistically significant (P < 0.05). The mRNA levels of type II collagen, aggrecan in group A were significantly more than group B; those of group B were significantly more than group C, which was significantly more than group D, and the difference was statistically significant (P < 0.05). H&E staining result: cartilage of group C was more significantly degenerative than other groups.. The three antagonists can target SDF-1/CXCR4 signaling pathway in vivo, reduce the expression and secretion of MMP-3, MMP-9, and MMP-13 in cartilage tissue, and reduce the degradation of collagen II and aggregating proteoglycan, thus delaying the degeneration of articular cartilage, of which TN14003 has the strongest regulatory effect. Targeted blockade of SDF-1/CXCR4 signaling pathway by TN14003 in vivo delays articular cartilage degeneration more effectively than T140 and AMD3100.

    Topics: Aggrecans; Animals; Benzylamines; Cartilage; Cartilage, Articular; Chemokine CXCL12; Cyclams; Guinea Pigs; Male; Matrix Metalloproteinases; Oligopeptides; Peptides; Receptors, CXCR4; Signal Transduction

2020
CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients.
    Oncogene, 2017, 03-02, Volume: 36, Issue:9

    The CXCR4 receptor and its ligand CXCL12 (also named stromal cell-derived factor 1, SDF1) have a critical role in chemotaxis and homing, key steps in cancer metastasis. Although myofibroblasts expressing CXCL12 are associated with the presence of axillary metastases in HER2 breast cancers (BC), the therapeutic interest of targeting CXCR4/CXCL12 axis in the different BC subtypes remains unclear. Here, we investigate this question by testing antitumor activity of CXCR4 inhibitors in patient-derived xenografts (PDX), which faithfully reproduce human tumor properties. We observed that two CXCR4 inhibitors, AMD3100 and TN14003, efficiently impair tumor growth and metastasis dissemination in both Herceptin-sensitive and Herceptin-resistant HER2 BC. Conversely, blocking CXCR4/CXCL12 pathway in triple-negative (TN) BC does not reduce tumor growth, and can even increase metastatic spread. Moreover, although CXCR4 inhibitors significantly reduce myofibroblast content in all BC subtypes, they decrease angiogenesis only in HER2 BC. Thus, our findings suggest that targeting CXCR4 could provide some therapeutic interest for HER2 BC patients, whereas it has no impact or could even be detrimental for TN BC patients.

    Topics: Animals; Anti-HIV Agents; Apoptosis; Benzylamines; Biomarkers, Tumor; Breast Neoplasms; Cell Proliferation; Cyclams; Female; Gene Expression Regulation, Neoplastic; Heterocyclic Compounds; Humans; Lung Neoplasms; Mice; Neoplasm Invasiveness; Neovascularization, Pathologic; Peptides; Receptor, ErbB-2; Receptors, CXCR4; Signal Transduction; Triple Negative Breast Neoplasms; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2017
CXCR4 antagonists suppress small cell lung cancer progression.
    Oncotarget, 2016, Dec-20, Volume: 7, Issue:51

    Small cell lung cancer (SCLC) is an aggressive tumor with poor prognosis due to early metastatic spread and development of chemoresistance. Playing a key role in tumor-stroma interactions the CXCL12-CXCR4 axis may be involved in both processes and thus represent a promising therapeutic target in SCLC treatment. In this study we investigated the effect of CXCR4 inhibition on metastasis formation and chemoresistance using an orthotopic xenograft mouse model. This model demonstrates regional spread and spontaneous distant metastases closely reflecting the clinical situation in extensive SCLC. Tumor engraftment, growth, metabolism, and metastatic spread were monitored using different imaging techniques: Magnetic Resonance Imaging (MRI), Bioluminescence Imaging (BLI) and Positron Emission Tomography (PET). Treatment of mice bearing chemoresistant primary tumors with the specific CXCR4 inhibitor AMD3100 reduced the growth of the primary tumor by 61% (P<0.05) and additionally suppressed metastasis formation by 43%. In comparison to CXCR4 inhibition as a monotherapy, standard chemotherapy composed of cisplatin and etoposide reduced the growth of the primary tumor by 71% (P<0.01) but completely failed to suppress metastasis formation. Combination of chemotherapy and the CXCR4 inhibitor integrated the highest of both effects. The growth of the primary tumor was reduced to a similar extent as with chemotherapy alone and metastasis formation was reduced to a similar extent as with CXCR4 inhibitor alone. In conclusion, we demonstrate in this orthotopic mouse model that the addition of a CXCR4 inhibitor to chemotherapy significantly reduces metastasis formation. Thus, it might improve the overall therapy response and consequently the outcome of SCLC patients.

    Topics: Animals; Benzylamines; Carcinogenesis; Cell Line, Tumor; Cell Movement; Cisplatin; Cyclams; DNA-Binding Proteins; Drug Resistance, Neoplasm; Etoposide; Heterocyclic Compounds; Humans; Lung Neoplasms; Mice; Mice, Knockout; Neoplasm Metastasis; Nuclear Proteins; Peptides; Receptors, CXCR4; Small Cell Lung Carcinoma; Xenograft Model Antitumor Assays

2016