Page last updated: 2024-08-22

titanium and chondroitin sulfates

titanium has been researched along with chondroitin sulfates in 21 studies

Research

Studies (21)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (9.52)18.2507
2000's9 (42.86)29.6817
2010's8 (38.10)24.3611
2020's2 (9.52)2.80

Authors

AuthorsStudies
Embery, G; Hughes Wassell, DT1
Baldwin, PD; Last, KS; Pender, N1
Chen, Z; Fan, H; Wei, D1
Chen, Z; Fan, H; Qiu, J; Zhang, P1
Bierbaum, S; Douglas, T; Funk, RH; Hanke, T; Monsees, TK; Scharnweber, D; Tippelt, S; Worch, H1
Bierbaum, S; Illert, T; Rammelt, S; Scharnweber, D; Schneiders, W; Zwipp, H1
Bernhardt, R; Bierbaum, S; Eckelt, U; Hempel, U; Huhle, M; Kuhlisch, E; Mai, R; Pilling, E; Scharnweber, D; Stadlinger, B1
Bernhardt, R; Bierbaum, S; Biewener, A; Goebbels, J; Heck, C; Rammelt, S; Scharnweber, D; Ziegler, J; Zwipp, H1
Hefti, T; Kalchofner, K; Langhoff, JD; Nuss, K; Scharnweber, D; Schlottig, F; Schnabelrauch, M; Voelter, K; von Rechenberg, B1
Aref, A; Bierbaum, S; Scharnweber, D; Schliephake, H; Sewing, A1
Bierbaum, S; Eckelt, U; Grimmer, S; Kuhlisch, E; Mai, R; Scharnweber, D; Schulz, MC; Stadlinger, B1
Beleites, T; Bornitz, M; Kluge, A; Lasurashvili, N; Neudert, M; Ney, M; Scharnweber, D; Zahnert, T1
Calabrese, S; Cordaro, ER; Faini, GP; Parodi, PC; Verlicchi, A; Zanotti, B1
Cha, HJ; Choi, BH; Choi, YS; Hwang, DS1
Li, Q; Wang, Q; Wang, Z; Zhao, H1
Bernhardt, R; Dudeck, J; Fratzl, P; Goebbels, J; Inderchand, M; Rammelt, S; Rehberg, S; Scharnweber, D; Schneiders, W; Vollmer, G; Zierau, O1
Ganesan, K; Kandiah, K; Valiyaveettil, S; Venkatachalam, R; Wang, C1
Atmani, H; Bertolini-Forno, L; Gaudière, F; Labat, B; Ladam, G; Morin-Grognet, S; Thoumire, O; Vannier, JP1
Alex, MJ; Mohan, K; Periasamy, P; Prabha, KK; Sekar, S; Venkatachalam, R1
Hibi, H; Kamio, H; Kuroda, K; Ohta, Y; Okabe, K; Okido, M; Toyama, N; Tsuchiya, S1
Gong, P; Ye, J1

Reviews

1 review(s) available for titanium and chondroitin sulfates

ArticleYear
[Research progress in surface modification of orthopaedic implants via extracellular matrix components].
    Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery, 2013, Volume: 27, Issue:11

    Topics: Animals; Bone Regeneration; Chondroitin Sulfates; Coated Materials, Biocompatible; Collagen Type I; Extracellular Matrix; Humans; Oligopeptides; Osseointegration; Prostheses and Implants; Surface Properties; Tissue Engineering; Titanium

2013

Other Studies

20 other study(ies) available for titanium and chondroitin sulfates

ArticleYear
Adsorption of chondroitin-4-sulphate and heparin onto titanium: effect of bovine serum albumin.
    Biomaterials, 1997, Volume: 18, Issue:16

    Topics: Adsorption; Animals; Binding Sites; Calcium; Cattle; Chondroitin Sulfates; Electron Probe Microanalysis; Glycosaminoglycans; Heparin; Hydrogen-Ion Concentration; Kinetics; Serum Albumin, Bovine; Surface Properties; Titanium

1997
Effects on tooth movement of force delivery from nickel-titanium archwires.
    European journal of orthodontics, 1999, Volume: 21, Issue:5

    Topics: Adolescent; Adult; Analysis of Variance; Child; Chondroitin Sulfates; Cuspid; Dental Alloys; Elasticity; Electrophoresis, Cellulose Acetate; Female; Follow-Up Studies; Gingival Crevicular Fluid; Gingivitis; Humans; Male; Maxilla; Nickel; Orthodontic Wires; Periodontal Index; Periodontal Pocket; Periodontium; Stress, Mechanical; Titanium; Tooth Movement Techniques

1999
[Effect of chondroitin sulfate-A attached titanium surface on culture osteoblast].
    Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition, 2003, Volume: 34, Issue:3

    Topics: Biocompatible Materials; Calcium; Cell Division; Cells, Cultured; Chondroitin Sulfates; Fetus; Humans; Osteoblasts; Titanium

2003
[Adsorption of chondroitin sulfate-A to the surface of titanium].
    Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi, 2003, Volume: 20, Issue:4

    Topics: Adsorption; Calcium; Chondroitin Sulfates; Static Electricity; Surface Properties; Titanium

2003
Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells.
    Journal of biomedical materials research. Part A, 2006, Jun-01, Volume: 77, Issue:3

    Topics: Animals; Cattle; Chondroitin Sulfates; Coated Materials, Biocompatible; Collagen; Decorin; Extracellular Matrix Proteins; Osteoblasts; Prostheses and Implants; Proteoglycans; Rats; Titanium

2006
Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate.
    Biomaterials, 2006, Volume: 27, Issue:32

    Topics: Animals; Bone Substitutes; Chondroitin Sulfates; Collagen; Immunohistochemistry; Implants, Experimental; Male; Materials Testing; Microscopy, Atomic Force; Oligopeptides; Osteoblasts; Rats; Rats, Wistar; Tibia; Titanium

2006
Influence of extracellular matrix coatings on implant stability and osseointegration: an animal study.
    Journal of biomedical materials research. Part B, Applied biomaterials, 2007, Volume: 83, Issue:1

    Topics: Animals; Bone and Bones; Bone Morphogenetic Protein 4; Bone Morphogenetic Proteins; Cattle; Chondroitin Sulfates; Coated Materials, Biocompatible; Collagen Type I; Extracellular Matrix; Humans; Implants, Experimental; Materials Testing; Osseointegration; Surface Properties; Swine; Titanium

2007
In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia.
    Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 2007, Volume: 25, Issue:8

    Topics: Animals; Bone Screws; Chondroitin Sulfates; Coated Materials, Biocompatible; Collagen Type I; Durapatite; External Fixators; Fracture Fixation; Implants, Experimental; Microscopy, Electron, Scanning; Radiography; Tibial Fractures; Titanium

2007
Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep.
    International journal of oral and maxillofacial surgery, 2008, Volume: 37, Issue:12

    Topics: Acid Etching, Dental; Animals; Bone Remodeling; Calcium Phosphates; Chondroitin Sulfates; Coated Materials, Biocompatible; Collagen Type I; Dental Etching; Dental Implants; Dental Materials; Dental Prosthesis Design; Diphosphonates; Electrochemical Techniques; Fluorescent Dyes; Ilium; Materials Testing; Models, Animal; Osseointegration; Sheep; Surface Properties; Time Factors; Titanium; Wound Healing; Zirconium

2008
Effect of modifications of dual acid-etched implant surfaces on peri-implant bone formation. Part I: organic coatings.
    Clinical oral implants research, 2009, Volume: 20, Issue:1

    Topics: Acid Etching, Dental; Animals; Bone Density; Bone Morphogenetic Protein 2; Bone Morphogenetic Proteins; Cell Adhesion; Chondroitin Sulfates; Coated Materials, Biocompatible; Collagen Type I; Dental Implants; Dogs; Female; Humans; Implants, Experimental; Oligopeptides; Osseointegration; Recombinant Proteins; Surface Properties; Time Factors; Titanium; Transforming Growth Factor beta

2009
Increased bone formation around coated implants.
    Journal of clinical periodontology, 2009, Volume: 36, Issue:8

    Topics: Acid Etching, Dental; Aluminum Oxide; Animals; Bone Density; Bone Matrix; Bone Remodeling; Chondroitin Sulfates; Coated Materials, Biocompatible; Collagen Type I; Dental Etching; Dental Implants; Dental Materials; Dental Prosthesis Design; Dental Prosthesis Retention; Female; Male; Mandible; Models, Animal; Osseointegration; Osteogenesis; Surface Properties; Swine; Swine, Miniature; Time Factors; Titanium

2009
Osseointegration of titanium prostheses on the stapes footplate.
    Journal of the Association for Research in Otolaryngology : JARO, 2010, Volume: 11, Issue:2

    Topics: Animals; Bone Morphogenetic Protein 4; Chondroitin Sulfates; Coated Materials, Biocompatible; Collagen Type I; Collagen Type II; Decorin; Extracellular Matrix; Extracellular Matrix Proteins; Female; Models, Animal; Osseointegration; Ossicular Replacement; Prosthesis Failure; Proteoglycans; Recombinant Proteins; Sheep; Stapes; Stapes Surgery; Titanium; Transforming Growth Factor beta; Tympanoplasty; X-Ray Microtomography

2010
Method to thicken the scalp in calvarian reconstruction.
    The Journal of craniofacial surgery, 2011, Volume: 22, Issue:2

    Topics: Accidents, Traffic; Bone Plates; Chondroitin Sulfates; Collagen; Craniocerebral Trauma; Durapatite; Humans; Male; Plastic Surgery Procedures; Scalp; Skull; Surgical Flaps; Titanium; Young Adult

2011
Facile surface functionalization with glycosaminoglycans by direct coating with mussel adhesive protein.
    Tissue engineering. Part C, Methods, 2012, Volume: 18, Issue:1

    Topics: 3T3 Cells; Animals; Cell Adhesion; Cell Differentiation; Cell Line; Cell Proliferation; Chondroitin Sulfates; Dermatan Sulfate; Glycosaminoglycans; Heparitin Sulfate; Hyaluronic Acid; Mice; Osteoblasts; Proteins; Surface Properties; Tissue Engineering; Titanium

2012
Increased bone remodelling around titanium implants coated with chondroitin sulfate in ovariectomized rats.
    Acta biomaterialia, 2014, Volume: 10, Issue:6

    Topics: Animals; Bone Remodeling; Chondroitin Sulfates; Coated Materials, Biocompatible; Female; Ovariectomy; Prostheses and Implants; Rats; Rats, Wistar; Tibia; Titanium

2014
In vitro and preliminary in vivo toxicity screening of high-surface-area TiO2-chondroitin-4-sulfate nanocomposites for bone regeneration application.
    Colloids and surfaces. B, Biointerfaces, 2015, Apr-01, Volume: 128

    Topics: Alkaline Phosphatase; Animals; Biocompatible Materials; Biomarkers; Bone Regeneration; Cell Line; Cell Proliferation; Cell Survival; Chondroitin Sulfates; Collagen Type I; Embryo, Nonmammalian; Escherichia coli; Gene Expression; Humans; Mitochondria; Nanocomposites; Osteoblasts; Osteocalcin; Osteopontin; Staphylococcus aureus; Titanium; Zebrafish

2015
Synergistic influence of topomimetic and chondroitin sulfate-based treatments on osteogenic potential of Ti-6Al-4V.
    Journal of biomedical materials research. Part A, 2016, Volume: 104, Issue:8

    Topics: Alloys; Animals; Biomimetic Materials; Cell Differentiation; Cell Line; Cell Proliferation; Cell Shape; Chondroitin Sulfates; Mice; Microscopy, Fluorescence; Osteoblasts; Osteogenesis; Surface Properties; Titanium

2016
In situ synthesised TiO2-chitosan-chondroitin 4-sulphate nanocomposites for bone implant applications.
    IET nanobiotechnology, 2016, Volume: 10, Issue:3

    Topics: Anti-Bacterial Agents; Bacteria; Bone Substitutes; Cell Line, Tumor; Cell Survival; Chitosan; Chondroitin Sulfates; Humans; Nanocomposites; Particle Size; Titanium

2016
Chondroitin-4-sulfate transferase-1 depletion inhibits formation of a proteoglycan-rich layer and alters immunotolerance of bone marrow mesenchymal stem cells on titanium oxide surfaces.
    Acta biomaterialia, 2020, 09-15, Volume: 114

    Topics: Bone Marrow Cells; Chondroitin Sulfates; Dental Implants; Humans; Mesenchymal Stem Cells; Osseointegration; Osteogenesis; Proteoglycans; Sulfates; Sulfotransferases; Surface Properties; Titanium; Transferases

2020
NGF-CS/HA-coating composite titanium facilitates the differentiation of bone marrow mesenchymal stem cells into osteoblast and neural cells.
    Biochemical and biophysical research communications, 2020, 10-20, Volume: 531, Issue:3

    Topics: Alkaline Phosphatase; Animals; Calcium; Cell Adhesion; Cell Differentiation; Chondroitin Sulfates; Coated Materials, Biocompatible; Mesenchymal Stem Cells; Nerve Growth Factor; Neurogenesis; Neurons; Osteoblasts; Surface Properties; Titanium

2020