titanium has been researched along with calcitriol in 21 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (14.29) | 18.2507 |
2000's | 9 (42.86) | 29.6817 |
2010's | 7 (33.33) | 24.3611 |
2020's | 2 (9.52) | 2.80 |
Authors | Studies |
---|---|
Enomoto, S; Kurachi, T; Nagao, H; Nagura, H | 1 |
Batzer, R; Boyan, BD; Cochran, DL; Dean, DD; Liu, Y; Schwartz, Z; Szmuckler-Moncler, S | 1 |
Boyan, BD; Cochran, DL; Dean, DD; Liu, Y; Lohmann, CH; Sagun, R; Schwartz, Z; Sylvia, VL | 1 |
Boyan, BD; Cochran, DL; Dean, DD; Lohmann, CH; Schwartz, Z; Simpson, J; Sisk, M; Sylvia, VL | 1 |
Barrère, F; de Bruijn, J; de Groot, K; Layrolle, P; Leeuwenburgh, S; Schoonman, J; van Blitterswijk, CA | 1 |
Arvidson, K; Lopez, BS; Mustafa, K; Rubinstein, J | 1 |
An, H; Andersson, GB; Chandrasekaran, R; Dobai, JG; Galante, JO; Glant, TT; Hallab, NJ; Jacobs, JJ; Vermes, C | 1 |
Boyan, BD; Cochran, DL; Lohmann, CH; Lossdörfer, S; Schwartz, Z; Turner, JD; Wang, L; Wieland, M | 1 |
Blanchard, C; Boyan, BD; Lohmann, CH; Poythress, N; Raz, P; Schwartz, Z; Turner, J; Wang, L | 1 |
Boyan, BD; Cochran, DL; Geis-Gerstorfer, J; Rupp, F; Schwartz, Z; Wieland, M; Zhao, G | 1 |
Bell, BF; Boyan, BD; Cochran, DL; Olivares-Navarrete, R; Schwartz, Z; Wang, L; Wieland, M; Zhao, G | 1 |
Farrar, D; Mansell, JP; Nowghani, M; Shorez, D | 1 |
Boyan, BD; Cochran, DL; Fang, M; Olivares-Navarrete, R; Schwartz, Z; Wieland, M | 1 |
Barbour, M; Blom, AW; Mansell, JP; Moore, C; Nowghani, M; Pabbruwe, M; Sjostrom, T | 1 |
Cattani-Lorente, M; Durual, S; Mekki, M; Pernet, F; Rieder, P; Wiskott, HW | 1 |
Blom, AW; Brown, J; Faul, CF; Knapp, JG; Mansell, JP | 1 |
Boyan, BD; Hyzy, SL; Olivares-Navarrete, R; Schwartz, Z | 1 |
Anderson, LG; Azzam, EI; Bai, B; Ballent, M; Barrett, T; Beecher, C; Ben Amara, I; Ben Saad, H; Boerwinkle, E; Bonelli, F; Bouchet, P; Boudawara, O; Boudawara, T; Bressler, J; Brundha, C; Bukhari, S; Burger, R; Chang, LC; Chen, X; Cheng, Y; Coyne, DW; Crosbie, E; Cuaderes, E; de Toledo, SM; DeLuca, HF; DeShea, L; Devarakonda, K; Dias, LC; Dickerson, AS; Driss, D; Duda, TF; Dunn, AM; Dusso, A; Edoff, M; Ellouz Chaabouni, S; Fjällström, V; Flandre, D; Fujisawa, Y; Garland, RM; Giulivi, C; Groß, MA; Grove, ML; Hakim, A; Hamilton, ER; Han, L; Henry, F; Herlein, A; Hersey, SP; Hessabi, M; Huang, TQ; Iacono, WG; Jain, S; Jia, Y; Karuppuchamy, S; Kerzeli, IK; Keyes, M; Kim, MH; Klinger, S; Kostenbader, K; Kotipalli, R; Kotsianidis, I; Kózka, M; Kucharzewski, M; Lamb, WL; Lamprianidou, E; Leadlay, PF; Lee, MS; Lee, YS; Li, H; Li, T; Lifschitz, AL; Loveland, KA; Ma, J; Maté, LM; Matsui, T; McGue, MK; McLaughlin, W; Meier, RR; Meissner, G; Mereiter, K; Meyer, C; Miltiades, P; Montgomery, J; Morton, TL; Mounir Zeghal, K; Murphy, AC; Muscher-Banse, AS; Nagasaki, K; Nakou, E; Napoli, E; Nicolas, F; Ogata, T; Olivera, BM; Olson, GT; Papamichos, SI; Pasek, DA; Pietrzycka, A; Piketh, S; Podgorski, AL; Prediger, P; Puillandre, N; Rahbar, MH; Rosewarne, PJ; Rostvall, F; Samek, DR; Samms-Vaughan, M; Schnepel, N; Shakespeare-Pellington, S; Shibata, M; Shingler, T; Smucny, J; Song, G; Song, Q; Sorooshian, A; Spanoudakis, E; Stebbing, PD; Stevens, KE; Stpniewski, M; Takasu, A; Tregellas, JR; Urbanek, T; Valcour, A; Vermang, B; Vijayan, A; Virkel, G; Wall, JV; Wang, C; Wang, J; Wang, N; Wang, W; Wang, Y; Wätjen, JT; Webster, L; Weissensteiner, W; Wilkens, MR; Wong, S; Wu, C; Wu, Q; Yamada, T; Yamaguchi, R; Yue, J; Zhou, Y; Zierold, C; Zirakzadeh, A; Zou, MX | 1 |
Berger, MB; Boyan, BD; Cochran, DL; Cohen, DJ; Olivares-Navarrete, R; Schwartz, Z; Williams, JK | 1 |
Cai, K; Chen, M; Hu, Y; Huang, L; Li, M; Luo, Z; Shen, X | 1 |
He, P; Ji, P; Li, Y; Ren, M; Xiang, J; Yang, S; Zhang, H; Zhang, Z | 1 |
1 trial(s) available for titanium and calcitriol
20 other study(ies) available for titanium and calcitriol
Article | Year |
---|---|
Effect of a titanium surface on bone marrow-derived osteoblastic cells in vitro.
Topics: Animals; Bone Marrow Cells; Calcitriol; Cell Division; Cell Line; Clone Cells; Coculture Techniques; Culture Media; Dental Implants; Dinoprostone; Mice; Osteoblasts; Skull; Spleen; Surface Properties; Titanium | 1997 |
Prostaglandins mediate the effects of titanium surface roughness on MG63 osteoblast-like cells and alter cell responsiveness to 1 alpha,25-(OH)2D3.
Topics: Alkaline Phosphatase; Calcitriol; Cell Line; Dinoprostone; Humans; Indomethacin; Osteoblasts; Osteocalcin; Surface Properties; Titanium; Transforming Growth Factor beta | 1998 |
Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2.
Topics: Alkaline Phosphatase; Calcitriol; Cell Division; Cell Line; Cyclic AMP-Dependent Protein Kinases; Enzyme Inhibitors; Humans; Isoquinolines; Osteoblasts; Phospholipases A; Phospholipases A2; Quinacrine; Surface Properties; Titanium | 1999 |
Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1,25-(OH)2D3 is mediated via protein kinase C- and protein kinase A-dependent pathways.
Topics: Animals; Biocompatible Materials; Calcitriol; Cell Differentiation; Cell Division; Cell Line; Cyclic AMP-Dependent Protein Kinases; Dinoprostone; Materials Testing; Models, Biological; Osteoblasts; Protein Kinase C; Rats; Surface Properties; Titanium; Transforming Growth Factor beta | 2001 |
Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.
Topics: Alloys; Animals; Apatites; Biocompatible Materials; Bone Marrow Cells; Bone Substitutes; Calcitriol; Calcium Phosphates; Cells, Cultured; Coated Materials, Biocompatible; Crystallization; Mice; Mice, Nude; Microscopy, Electron, Scanning; Osteoclasts; Prostheses and Implants; Solutions; Surface Properties; Time Factors; Titanium | 2001 |
Production of transforming growth factor beta1 and prostaglandin E2 by osteoblast-like cells cultured on titanium surfaces blasted with TiO2 particles.
Topics: Adolescent; Adult; Biocompatible Materials; Calcitriol; Cell Culture Techniques; Cell Differentiation; Cell Size; Culture Media, Conditioned; Dinoprostone; Enzyme-Linked Immunosorbent Assay; Female; Humans; Microscopy, Electron, Scanning; Osteoblasts; Osteogenesis; Particle Size; Statistics as Topic; Statistics, Nonparametric; Surface Properties; Titanium; Transforming Growth Factor beta; Transforming Growth Factor beta1 | 2003 |
The combination of pamidronate and calcitriol reverses particle- and TNF-alpha-induced altered functions of bone-marrow-derived stromal cells with osteoblastic phenotype.
Topics: Adult; Aged; Alkaline Phosphatase; Calcitriol; Cell Division; Cell Survival; Cells, Cultured; Diphosphonates; Drug Combinations; Female; Humans; Interleukin-6; Male; Middle Aged; Osteoblasts; Osteonectin; Pamidronate; Procollagen; RNA, Messenger; Stromal Cells; Titanium; Tumor Necrosis Factor-alpha | 2004 |
Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity.
Topics: Animals; Biocompatible Materials; Calcitriol; Carrier Proteins; Cell Line, Tumor; Glycoproteins; Humans; Materials Testing; Membrane Glycoproteins; Osteoblasts; Osteoclasts; Osteogenesis; Osteoprotegerin; Prostheses and Implants; RANK Ligand; Rats; Receptor Activator of Nuclear Factor-kappa B; Receptors, Cytoplasmic and Nuclear; Receptors, Tumor Necrosis Factor; Surface Properties; Titanium | 2004 |
1alpha,25(OH)2D3 regulation of integrin expression is substrate dependent.
Topics: Cell Culture Techniques; Cell Division; Cell Line, Tumor; Gene Expression Regulation; Humans; Integrins; Microscopy, Electron, Scanning; Osteoblasts; Osteocalcin; RNA, Messenger; Titanium; Vitamin D | 2004 |
High surface energy enhances cell response to titanium substrate microstructure.
Topics: Alkaline Phosphatase; Calcitriol; Cell Count; Cell Line, Tumor; Cell Proliferation; Dinoprostone; Energy Metabolism; Humans; Osteoblasts; Osteocalcin; Phenotype; Prostheses and Implants; Spectrometry, X-Ray Emission; Surface Properties; Titanium; Transforming Growth Factor beta; Transforming Growth Factor beta1 | 2005 |
Integrin beta1 silencing in osteoblasts alters substrate-dependent responses to 1,25-dihydroxy vitamin D3.
Topics: Animals; Antibodies; Bone Density Conservation Agents; Calcitriol; Cell Culture Techniques; Cell Line; Dinoprostone; Gene Silencing; Humans; Integrin beta1; Mice; Osteoblasts; Osteoprotegerin; RNA, Small Interfering; Surface Properties; Titanium; Transforming Growth Factor beta1 | 2006 |
Lithocholate--a promising non-calcaemic calcitriol surrogate for promoting human osteoblast maturation upon biomaterials.
Topics: Animals; Calcitriol; Cattle; Cell Differentiation; Cell Line; Durapatite; Humans; Intercellular Signaling Peptides and Proteins; Lithocholic Acid; Osteoblasts; Prostheses and Implants; Receptors, Calcitriol; Titanium; Transcription Factor AP-1 | 2009 |
The role of phospholipase D in osteoblast response to titanium surface microstructure.
Topics: Base Sequence; Cell Line; Clone Cells; Enzyme Activation; Gene Knockdown Techniques; Gene Silencing; Humans; Isoenzymes; Molecular Sequence Data; Osteoblasts; Phospholipase D; Protein Kinase C; RNA, Small Interfering; Substrate Specificity; Surface Properties; Titanium; Vitamin D | 2010 |
The synergistic effects of lysophosphatidic acid receptor agonists and calcitriol on MG63 osteoblast maturation at titanium and hydroxyapatite surfaces.
Topics: Albumins; Biocompatible Materials; Calcitriol; Cell Differentiation; Cell Line; Durapatite; Humans; Lysophospholipids; Organothiophosphates; Osteoblasts; Phosphatidic Acids; Receptors, Lysophosphatidic Acid; Surface Properties; Titanium | 2010 |
Titanium nitride oxide coating on rough titanium stimulates the proliferation of human primary osteoblasts.
Topics: Acid Etching, Dental; Alkaline Phosphatase; Alloys; Aluminum Oxide; Calcitriol; Calcium Channel Agonists; Cell Adhesion; Cell Count; Cell Differentiation; Cell Proliferation; Cells, Cultured; Coated Materials, Biocompatible; Dental Etching; Dental Materials; Gene Expression Regulation; Humans; Hydrochloric Acid; Microscopy, Electron, Scanning; Osteoblasts; Osteocalcin; Osteoprotegerin; Photoelectron Spectroscopy; Plasma Gases; Reverse Transcriptase Polymerase Chain Reaction; Surface Properties; Titanium | 2011 |
Lysophosphatidic acid-functionalised titanium as a superior surface for supporting human osteoblast (MG63) maturation.
Topics: Alkaline Phosphatase; Bone Density Conservation Agents; Calcitriol; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Humans; Lysophospholipids; Microscopy, Electron, Scanning; Molecular Structure; Organophosphonates; Osteoblasts; Osteogenesis; Photoelectron Spectroscopy; Surface Properties; Time Factors; Titanium | 2012 |
Regulation of Osteoblast Differentiation by Acid-Etched and/or Grit-Blasted Titanium Substrate Topography Is Enhanced by 1,25(OH)2D3 in a Sex-Dependent Manner.
Topics: Animals; Bone Marrow Cells; Cell Differentiation; Female; Humans; Male; Osseointegration; Osteoblasts; Osteogenesis; Rats; Sex Characteristics; Titanium; Vitamin D | 2015 |
Human osteoblasts exhibit sexual dimorphism in their response to estrogen on microstructured titanium surfaces.
Topics: Biocompatible Materials; Cells, Cultured; Estradiol; Estrogens; Humans; Osteoblasts; Osteocalcin; Osteoprotegerin; Sex Characteristics; Surface Properties; Titanium; Vitamin D | 2018 |
Construction of multilayered molecular reservoirs on a titanium alloy implant for combinational drug delivery to promote osseointegration in osteoporotic conditions.
Topics: Alkaline Phosphatase; Animals; beta-Cyclodextrins; Bone and Bones; Calcitonin; Calcitriol; Cattle; Cell Differentiation; Cell Polarity; Chitosan; Drug Delivery Systems; Gene Expression Regulation; Mice; Osseointegration; Osteoblasts; Osteogenesis; Osteoporosis; Prostheses and Implants; Proton Magnetic Resonance Spectroscopy; Rabbits; Rats; RAW 264.7 Cells; RNA, Messenger; Titanium; Wound Healing | 2020 |
1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration.
Topics: Animals; Calcitriol; Cell Line; Delayed-Action Preparations; Mice; Nanotubes; Osseointegration; Tissue Scaffolds; Titanium | 2020 |