tirapazamine has been researched along with tretazicar* in 5 studies
2 review(s) available for tirapazamine and tretazicar
Article | Year |
---|---|
Hypoxia: targeting the tumour.
Solid tumours contain regions of very low oxygen concentrations that are said to be hypoxic. Hypoxia is a natural phenotype of solid tumours resulting from an imperfect vascular network. There are a number of consequences associated with tumour hypoxia including: resistance to ionising radiation, resistance to chemotherapy and the magnification of mutated p53. In addition tissue hypoxia has been regarded as a key factor for tumour aggressiveness and metastasis by activation of signal transduction pathways and gene regulatory mechanisms. It is clear that hypoxia in solid tumours promotes a strong oncogenic phenotype and is a phenomenon that occurs in all solid tumours. As such this provides a significant target for drug discovery particularly for tumour-targeting agents. A range of chemical classes (N-oxides, quinones, nitro-aromatics) have been explored as bioreductive agents that target tumour hypoxia. The most advanced agent, tirapazamine, is in phase III clinical trials in combination with cis-platin. The aim of this review is to give a brief overview of the current molecules and strategies being explored for targeting tumour hypoxia. Topics: Anthraquinones; Antineoplastic Agents; Aziridines; Benzoquinones; Cell Hypoxia; Clinical Trials, Phase III as Topic; Drug Screening Assays, Antitumor; Humans; Imidazoles; Indolequinones; Neoplasms; Prodrugs; Quinolines; Radiation-Sensitizing Agents; Tirapazamine; Triazines | 2006 |
DT-diaphorase and cancer chemotherapy.
Topics: Animals; Antineoplastic Agents; Aziridines; Benzoquinones; Dihydrolipoamide Dehydrogenase; Drug Design; Enzyme Induction; Gene Expression Regulation, Enzymologic; Humans; Indolequinones; Indoles; Mitomycin; Neoplasms; Precancerous Conditions; Tirapazamine; Triazines | 1992 |
3 other study(ies) available for tirapazamine and tretazicar
Article | Year |
---|---|
Bioreductive therapies: an overview of drugs and their mechanisms of action.
Bioreductively activated drugs have been used as antimicrobials, chemotherapeutic agents, and radiation sensitizers. The present paper is an overview of their mechanism of action and application in the treatment of cancer.. Drugs such as nitroimidazoles, mitomycins, and benzotriazine di-N-oxides were a focus of this research. Studies have ranged from the chemistry of the reductive process of activation to in vitro and in vivo studies in rodent and human cells, through to clinical testing. The variety of techniques and test systems brought to bear on these compounds is a strength of this field of research.. A detailed chemical understanding of the mechanism of action of a variety of bioreductives is now available. The enzymatic processes by which these drugs are activated and the cofactors involved in this activation are becoming well understood. Recent advances have been made in the design and use of dual-function bioreductives, bioreductive triggers of drug activation, and DNA-targeted bioreductives. Significant success has been demonstrated clinically with bioreductive drugs, used in combination with radiation and front-line chemotherapeutic agents. The areas of antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT) are identified as new directions for bioreductive therapy.. The use of bioreductively-activated drugs for the treatment of cancer has made steady progress. The success obtained clinically and the new molecular approaches currently being implemented promise significant advances in the future. Topics: Animals; Antineoplastic Agents; Aziridines; Cell Hypoxia; DNA, Neoplasm; Forecasting; Humans; Indolequinones; Indoles; Misonidazole; Mitomycin; Nitrofurans; Nitroimidazoles; Oxidation-Reduction; Prodrugs; Radiation-Sensitizing Agents; Tirapazamine; Triazines | 1998 |
The role of human and rodent DT-diaphorase in the reductive metabolism of hypoxic cell cytotoxins.
DT-diaphorase is a unique two electron (2e) donating reductase catalyzing either bioactivation or bioprotection reactions. Using human and rodent DT-diaphorase preparations (cell extracts and purified enzyme) we have characterized the reductive metabolism of the hypoxic cell cytotoxins EO9, mitomycin C (MMC), CB 1954, and SR 4233 in vitro. Drug metabolism was assayed spectrophotometrically or by HPLC, with dicoumarol as a selective inhibitor. DNA damage was measured using an agarose gel mobility technique with plasmid pBR322 DNA. The developmental indoloquinone, EO9, was metabolized by both rat Walker and human HT29 tumor DT-diaphorases. Reduction proceeded 5-fold more efficiently with the rat than the human tumor enzyme and resulted in single-strand breaks in plasmid DNA. The structurally related MMC was metabolized much more slowly than EO9 by the rat Walker tumor enzyme and there was no detectable reaction with the human HT29 tumor DT-diaphorase. No DNA damage was seen with MMC for either enzyme. The dinitrophenylaziridine CB 1954 was reduced by both human and rat enzymes forming, preferentially, the highly toxic 4-hydroxylamine as a 4e reduction product. Rates were 3-fold lower than for the human tumor enzyme. SR 4233 was also reduced by the rat tumor enzyme predominantly via 4e reduction to the benzotriazine SR 4330, in a novel reaction mechanism. This appears to be a bioprotection pathway that bypasses the toxic 1e radical formed by other reductases. Such information may be valuable in the selection of hypoxic cell cytoxins to treat human tumors high or low in DT-diaphorase and should facilitate 'enzyme-directed' analogue development. Topics: Animals; Antineoplastic Agents; Aziridines; Carcinoma 256, Walker; Cell Hypoxia; Colonic Neoplasms; Humans; In Vitro Techniques; Indolequinones; Indoles; Mitomycin; NAD(P)H Dehydrogenase (Quinone); Oxidation-Reduction; Prodrugs; Rats; Tirapazamine; Triazines | 1992 |
Molecular enzymology of the reductive bioactivation of hypoxic cell cytotoxins.
The hypoxic cell cytotoxins SR 4233, benznidazole (Benzo), and CB 1954 were readily reduced by anaerobic mouse liver microsomes in vitro to their respective amino or single N-oxide derivatives. The reactions were inhibited in air and required reduced cofactors, particularly NADPH. The rates of reductive bioactivation were markedly different for each drug, with SR 4233 much greater than CB 1954 greater than Benzo. Using purified cytochrome P-450 reductase (P-450 reductase) and an inhibitory antibody to this enzyme, we demonstrated that P-450 reductase was involved in the reductive bioactivation of all 3 compounds. It had a minor role in SR 4233 reduction, but a more important involvement in CB 1954 metabolism to its 4-amino metabolite. Using carbon monoxide, a specific inhibitor of cytochrome P-450 (P-450), we demonstrated that P-450 was involved in both SR 4233 and Benzo reduction. P-450 had a major role both in SR 4233 conversion to SR 4317 and in the latter steps of Benzo amine formation. Purified xanthine oxidase was shown to reduce SR 4233 and Benzo in vitro, but cytosolic aldehyde oxidase activity was only detectable with Benzo as substrate. Characterizing the relative participation of the various reductases in tumor versus normal tissues may allow a more rational selection and application of hypoxic cell cytotoxins in cancer therapy. Topics: Animals; Antineoplastic Agents; Aziridines; Azirines; Biotransformation; Carbon Monoxide; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Cytosol; Male; Mice; Mice, Inbred C3H; Microsomes, Liver; Nitroimidazoles; Oxidation-Reduction; Radiation-Sensitizing Agents; Tirapazamine; Triazines | 1989 |