tirapazamine has been researched along with 5-5-dimethyl-1-pyrroline-1-oxide* in 3 studies
3 other study(ies) available for tirapazamine and 5-5-dimethyl-1-pyrroline-1-oxide
Article | Year |
---|---|
Spin trapping of radicals other than the *OH radical upon reduction of the anticancer agent tirapazamine by cytochrome P450 reductase.
The radical species produced following one-electron reduction of tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide, TPZ) by cytochrome P(450) reductase-enriched microsomes have been investigated using electron paramagnetic resonance (EPR) spectroscopy. Spin trapping with 5,5'-dimethylpyrroline 1-N-oxide (DMPO) gave a composite spectrum of a carbon-centered radical and the well-known DMPO-OH adduct. Using (17)O-labeled water resulted in a change in the EPR spectrum to that of DMPO-(17)OH, indicating that this radical species is formed with solvent involvement and not from release of a (*)OH radical from one-electron-reduced TPZ. Furthermore, using the closely related spin trap 5-diethoxyphosphoryl-5-methylpyrroline N-oxide (DEPMPO), which is less prone to oxidation than DMPO, gave only a carbon-centered radical spectrum without any involvement of a (*)OH radical. Reduction of a more soluble analogue of TPZ, in redox equilibrium with its 1-oxide derivative, led to spin trapping of both a carbon-centered radical and a nitrogen-centered radical by N-tert-butyl-alpha-phenylnitrone (PBN). The multicentered nature of this nitrogen-centered radical spectrum provides support for the formation of a benzotriazinyl radical following one-electron reduction of this class of bioreductive drug. Topics: Antineoplastic Agents; Cyclic N-Oxides; Electron Spin Resonance Spectroscopy; Hydroxyl Radical; NADPH-Ferrihemoprotein Reductase; Oxidation-Reduction; Pyrroles; Spin Labels; Spin Trapping; Tirapazamine; Triazines | 2009 |
Photochemical and photobiological studies of tirapazamine (SR 4233) and related quinoxaline 1,4-Di-N-oxide analogues.
Tirapazamine, 3-amino-1,2,4-benzotriazine 1,4-di-N-oxide (TPZ; SR 4233), is currently undergoing phase II and III clinical trials as an antitumor agent. We have studied the photochemical properties of TPZ, and the related analogues 3-amino-2-quinoxalinecarbonitrile 1,4-di-N-oxide (TPZCN) and quinoxaline-1,4-di-N-oxide (quindoxin) with respect to their potential to photodamage DNA both oxidatively and reductively. We have found that TPZ, TPZCN, and quindoxin photosensitized the generation of singlet oxygen with quantum yields of 0.007, 0.19, and 0.02, respectively, in acetonitrile. Irradiation (lambda > 300 nm) of TPZ at pH 9.4 in the presence of a reducing agent, NADH, generated the corresponding nitroxide radical. At pH 7.4, photoirradiation of either TPZ or TPZCN in the presence of NADH in air saturated buffer gave the superoxide radical, which was trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In the absence of a reducing agent, singlet oxygen generated from TPZCN oxidized DMPO to 5,5-dimethyl-2-oxopyrrolin-1-oxyl (DMPOX). No spin adducts were detected during photoirradiation of TPZ, NADH, and DMPO in nitrogen-saturated buffer. However, when DMSO was also present, the DMPO/(*)CH(3) adduct was observed, indicating the generation of the free hydroxyl radical. Both TPZ and TPZCN photooxidized reduced glutathione and azide to the glutathiyl and azidyl radicals, respectively. Under anaerobic conditions, NADH increased photoinduced strand breaks in pBR322 plasmid DNA caused by TPZ or TPZCN. For TPZ, the reactive species is probably the aforementioned nitroxide radical or the hydroxyl radical generated from its decomposition. In contrast, DNA damage by quindoxin was not affected by NADH, suggesting a different mechanism, possibly involving a photogenerated oxaziridine intermediate. These studies show that the photochemistry of TPZ, TPZCN, and quindoxin is complex and depends on the redox environment and whether oxygen is present. Topics: Antineoplastic Agents; Azides; Computer Simulation; Cyclic N-Oxides; DNA Damage; Electron Spin Resonance Spectroscopy; Free Radicals; Glutathione; NAD; Oxidation-Reduction; Photolysis; Plasmids; Quinoxalines; Radiation-Sensitizing Agents; Singlet Oxygen; Spectrophotometry; Spin Labels; Tirapazamine; Triazines | 2003 |
Microsomal reduction of 3-amino-1,2,4-benzotriazine 1,4-dioxide to a free radical.
The drug SR 4233 (3-amino-1,2,4-benzotriazine 1,4-dioxide) is under pharmacological study as the lead compound in a new series of hypoxia-activated drugs, the benzotriazine N-oxides. However, the stable two- and four-electron-reduced metabolites of SR 4233, formed by the successive loss of the two oxygen atoms, are not pharmacologically active. In order to evaluate the possibility of an initial one-electron intermediate as the active species, we have used microsomal reduction and EPR spectroscopy to identify the first free radical reduction product. The unpaired electron is primarily centered on the 1-nitrogen, and the radical is best described as a nitroxide. Results with spin-trapping experiments show that reduction of SR 4233 to a free radical is followed by its air oxidation, resulting in the formation of the superoxide radical. Experiments with specific inhibitors suggest that the drug is being reduced by microsomal NADPH-cytochrome P-450 reductase. Topics: Animals; Antineoplastic Agents; Cyclic N-Oxides; Electron Spin Resonance Spectroscopy; Free Radicals; In Vitro Techniques; Microsomes, Liver; Oxidation-Reduction; Radiation-Sensitizing Agents; Rats; Tirapazamine; Triazines | 1991 |