tiqueside has been researched along with pamaqueside* in 2 studies
2 other study(ies) available for tiqueside and pamaqueside
Article | Year |
---|---|
Comparison of synthetic saponin cholesterol absorption inhibitors in rabbits: evidence for a non-stoichiometric, intestinal mechanism of action.
The hypocholesterolemic activities of pamaqueside and tiqueside, two structurally similar saponins, were evaluated in cholesterol-fed rabbits. The pharmacological profiles of the saponins were virtually identical: both dose-dependently decreased the intestinal absorption of labeled cholesterol 25-75%, increased fecal neutral sterol excretion up to 2.5-fold, and decreased hepatic cholesterol content 10-55%. High doses of pamaqueside (>5 mg/kg) or tiqueside (>125 mg/kg) completely prevented hypercholesterolemia. Decreases in plasma and hepatic cholesterol levels were strongly correlated with increased neutral sterol excretion. Ratios of neutral sterol excreted to pamaqueside administered were greater than 1:1 at all doses, in opposition to the formation of a stoichiometric complex previously suggested for tiqueside and other saponins. Ratios in tiqueside-treated rabbits were less than unity, a reflection of its lower potency. Pamaqueside-treated rabbits exhibited a more rapid decline in plasma cholesterol concentrations than control animals fed a cholesterol-free diet, indicating that the compound also inhibited the absorption of biliary cholesterol. Intravenous administration of pamaqueside had no effect on plasma cholesterol levels despite plasma levels twice those observed in rabbits given pamaqueside orally. These data indicate that pamaqueside and tiqueside induce hypocholesterolemia by blocking lumenal cholesterol absorption via a mechanism that apparently differs from the stoichiometric complexation of cholesterol hypothesized for other saponins. Topics: Administration, Oral; Animals; Anticholesteremic Agents; Bile; Cholesterol; Cholesterol, Dietary; Cholesterol, HDL; Feces; Hypercholesterolemia; Injections, Intravenous; Intestinal Absorption; Liver; Male; Molecular Structure; Rabbits; Saponins; Sterols | 1999 |
Steroidal glycoside cholesterol absorption inhibitors.
We have explored the use of steroidal glycosides as cholesterol absorption inhibitors which act through an unknown mechanism. The lead for this program was tigogenin cellobioside (1, tiqueside) which is a weak inhibitor (ED50 = 60 mg/kg) as measured in an acute hamster cholesterol absorption assay. Modification of the steroid portion of the molecule led to the discovery of 11-ketotigogenin cellobioside (5, pamaqueside) which has an ED50 of 2 mg/kg. Replacement of the cellobiose with other sugars failed to provide more potent analogs. However, large improvements in potency were realized through modification of the hydroxyl groups on the cellobiose. This strategy ultimately led to the 4", 6"-bis[(2-fluorophenyl)carbamoyl]-beta-D-cellobiosyl derivative of 11-ketotigogenin (51) with an ED50 of 0.025 mg/kg in the hamster assay, as well as the corresponding hecogenin analog 64 (ED50 = 0.07 mg/kg). Topics: Absorption; Animals; Cholesterol; Cricetinae; Drug Design; Hypolipidemic Agents; Liver; Models, Chemical; Saponins; Structure-Activity Relationship | 1997 |