tipranavir has been researched along with dolutegravir* in 2 studies
1 trial(s) available for tipranavir and dolutegravir
Article | Year |
---|---|
Effects of enzyme inducers efavirenz and tipranavir/ritonavir on the pharmacokinetics of the HIV integrase inhibitor dolutegravir.
Dolutegravir (DTG) is an unboosted, integrase inhibitor for the treatment of HIV infection. Two studies evaluated the effects of efavirenz (EFV) and tipranavir/ritonavir (TPV/r) on DTG pharmacokinetics (PK) in healthy subjects.. The first study was an open-label crossover where 12 subjects received DTG 50 mg every 24 hours (q24h) for 5 days, followed by DTG 50 mg and EFV 600 mg q24h for 14 days. The second study was an open-label crossover where 18 subjects received DTG 50 mg q24h for 5 days followed by TPV/r 500/200 mg every 12 hours (q12h) for 7 days and then DTG 50 mg q24h and TPV/r 500/200 mg q12h for a further 5 days. Safety assessments and serial PK samples were collected. Non-compartmental PK analysis and geometric mean ratios and 90% confidence intervals were generated.. The combination of DTG with EFV or TPV/r was generally well tolerated. Four subjects discontinued the TPV/r study due to increases in alanine aminotransferase that were considered related to TPV/r. Co-administration with EFV resulted in decreases of 57, 39 and 75% in DTG AUC(0-τ), Cmax and Cτ, respectively. Co-administration with TPV/r resulted in decreases of 59, 46 and 76% in DTG AUC(0-τ), Cmax and Cτ, respectively.. Given the reductions in exposure and PK/pharmacodynamic relationships in phase II/III trials, DTG should be given at an increased dose of 50 mg twice daily when co-administered with EFV or TPV/r, and alternative regimens without inducers should be considered in integrase inhibitor-resistant patients. Topics: Adult; Aged; Alkynes; Anti-HIV Agents; Area Under Curve; Benzoxazines; Cross-Over Studies; Cyclopropanes; Drug Combinations; Drug Interactions; Female; Heterocyclic Compounds, 3-Ring; HIV Integrase Inhibitors; Humans; Male; Middle Aged; Models, Biological; Oxazines; Piperazines; Pyridines; Pyridones; Pyrones; Ritonavir; Sulfonamides; Young Adult | 2014 |
1 other study(ies) available for tipranavir and dolutegravir
Article | Year |
---|---|
Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: A molecular docking and drug repurposing approach.
Outbreak of COVID-19 has been recognized as a global health concern since it causes high rates of morbidity and mortality. No specific antiviral drugs are available for the treatment of COVID-19 till date. Drug repurposing strategy helps to find out the drugs for COVID-19 treatment from existing FDA approved antiviral drugs. In this study, FDA approved small molecule antiviral drugs were repurposed against the major viral proteins of SARS-CoV-2.. The 3D structures of FDA approved small molecule antiviral drugs were retrieved from PubChem. Virtual screening was performed to find out the lead antiviral drug molecules against main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) using COVID-19 Docking Server. Furthermore, lead molecules were individually docked against protein targets using AutoDock 4.0.1 software and their drug-likeness and ADMET properties were evaluated.. Out of 65 FDA approved small molecule antiviral drugs screened, Raltegravir showed highest interaction energy value of -9 kcal/mol against Mpro of SARS-CoV-2 and Indinavir, Tipranavir, and Pibrentasvir exhibited a binding energy value of ≥-8 kcal/mol. Similarly Indinavir showed the highest binding energy of -11.5 kcal/mol against the target protein RdRp and Dolutegravir, Elbasvir, Tipranavir, Taltegravir, Grazoprevir, Daclatasvir, Glecaprevir, Ledipasvir, Pibrentasvir and Velpatasvir showed a binding energy value in range from -8 to -11.2 kcal/mol. The antiviral drugs Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine also exhibited good bioavailability and drug-likeness properties.. This study suggests that the screened small molecule antiviral drugs Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine could serve as potential drugs for the treatment of COVID-19 with further validation studies. Topics: Antiviral Agents; Coronavirus Protease Inhibitors; COVID-19 Drug Treatment; Drug Repositioning; Heterocyclic Compounds, 3-Ring; Humans; Indinavir; Molecular Docking Simulation; Nitriles; Oxazines; Piperazines; Pyridines; Pyridones; Pyrimidines; Pyrones; Raltegravir Potassium; RNA-Dependent RNA Polymerase; SARS-CoV-2; Sulfonamides | 2020 |