tildipirosin and florfenicol

tildipirosin has been researched along with florfenicol* in 2 studies

*florfenicol: structure given in first source [MeSH]

*florfenicol: structure given in first source [MeSH]

Trials

2 trial(s) available for tildipirosin and florfenicol

ArticleYear
Treatment with 2 commercial antibiotics reduced clinical and systemic signs of pneumonia and the abundance of pathogenic bacteria in the upper respiratory tract of preweaning dairy calves.
    Journal of dairy science, 2023, Volume: 106, Issue:4

    The aim of this study was to evaluate the effect of therapeutically administered tildipirosin or florfenicol + flunixin meglumine for the treatment of bovine respiratory disease (BRD) accompanied by fever in calves before weaning compared with diseased and untreated animals. As specific objectives, we evaluated the composition of the bacterial microbiota of the upper respiratory tract (URT) and blood and health parameters of the animals. Preweaning Holstein female calves diagnosed with naturally acquired pneumonia were randomly assigned to one of the following experimental groups on the day of diagnosis (d 0): (1) TLD (n = 36): single subcutaneous injection with 4 mg/kg tildipirosin; (2) FLF (n = 33): single subcutaneous injection with an antimicrobial (40 mg/kg florfenicol) combined with a nonsteroidal anti-inflammatory drug (2.2 mg/kg flunixin meglumine); and (3) NEG (n = 35): no treatment within the first 5 d following enrollment. The NEG treatment group was closely monitored for 5 d, and calves were removed from the study following a standardized late treatment protocol, when necessary, to minimize health concerns. Healthy untreated calves (CTR; n = 31) were also selected for the study and used as controls. Blood samples used for biochemical analysis and nasopharyngeal swabs used for evaluation of URT microbiota were collected daily from d 0 until d 5 and then weekly until weaning. Next-generation sequencing of the 16S rRNA gene was used to assess the URT microbiota at the phylum and genus levels. Clinical signs associated with pneumonia and otitis media were assessed daily, as was the need for antibiotic interventions. Calves in the TLD and FLF groups had faster recovery from fever within the first 5 d after enrollment. In addition, antibiotic-treated calves reached the same serum haptoglobin levels as healthy calves on d 2 after diagnosis, whereas calves in the NEG group had higher haptoglobin levels than the CTR group until at least d 5 after BRD diagnosis. Calves in the TLD and FLF groups had a lower risk of treatment for pneumonia (FLF = 22.8%; TLD = 27.7%) from d 5 to weaning than calves in the NEG group (54.7%). Furthermore, FLF treatment had a significantly lower risk of nasal discharge, otitis media, and treatment failure compared with the NEG group, but did not differ from the TLD group. Differences in the composition of the URT microbiota were found between groups, and the genus Mycoplasma was the most abundant in samples collected from the

    Topics: Animals; Anti-Bacterial Agents; Bacteria; Cattle; Cattle Diseases; Female; Haptoglobins; Otitis Media; Pneumonia; Respiratory System; RNA, Ribosomal, 16S

2023
Effect of treatment of pneumonia and otitis media with tildipirosin or florfenicol + flunixin meglumine on health and upper respiratory tract microbiota of preweaned Holstein dairy heifers.
    Journal of dairy science, 2021, Volume: 104, Issue:9

    The objective of this randomized clinical study was to compare the effect of 2 antimicrobial interventions, tildipirosin or florfenicol + flunixin meglumine, used for treatment of pneumonia and extralabel treatment for otitis on health parameters and upper respiratory tract (URT) microbiota of preweaned Holstein calves. Housed preweaned Holstein heifers diagnosed with either otitis or pneumonia were assigned into 1 of 2 treatment groups, receiving a single subcutaneous injection of either 4 mg/kg of tildipirosin (TLD; n = 444) or 40 mg/kg of florfenicol combined with 2.2 mg/kg of a nonsteroidal anti-inflammatory, flunixin meglumine (FLF; n = 442). Calves were enrolled and treated on the day of diagnosis of the first case of pneumonia or otitis. If a calf had a recurrent case, the opposite drug was administered, respecting an interval of 5 d between drug injections. Blood samples for leukocyte counts were collected at 0, 2, 4, and 6 d after treatment, and rectal temperature was measured daily during the 5 d after treatment. Ear scores were observed from calves with otitis. Additionally, swabs of the URT were collected from a subset of 20 calves in each treatment group at d 0, 3, 6, 9, and 11 following enrollment for analysis of URT microbiota through next-generation sequencing of the 16S rRNA gene and quantitative PCR. Swabs were also collected from a comparative group of 20 healthy calves that did not receive any drug. No differences were observed between groups for recurrence risk of either pneumonia (TLD = 32.4%; FLF = 29.7%) or otitis (TLD = 72.7%; FLF = 73.6%). Similarly, no differences were observed for the total number of treatments for pneumonia (TLD = 1.45; FLF = 1.42) or otitis (TLD = 2.96; FLF = 3.07). On the other hand, both drugs reduced rectal temperature, ear scores, and leukocyte counts, with FLF calves having a greater reduction in rectal temperature within 4 d after treatment. Both TLD and FLF reduced the total bacterial load when compared with healthy untreated calves, but no differences were observed between treatment groups. Furthermore, compared with the untreated group, treated calves had lower mean relative abundances (MRA) of the genera Mannheimia, Moraxella, and Pasteurella within 11, 9, and 3 d after treatment, respectively; however, no significant differences were observed between TLD and FLF. On the other hand, MRA of Mycoplasma was not decreased by both treatments compared to untreated animals, and a higher MRA was observed in

    Topics: Animals; Cattle; Cattle Diseases; Clonixin; Female; Meglumine; Microbiota; Otitis Media; Pneumonia; Respiratory System; RNA, Ribosomal, 16S; Thiamphenicol; Tylosin

2021