thymosin-beta(4) has been researched along with goralatide* in 22 studies
6 review(s) available for thymosin-beta(4) and goralatide
Article | Year |
---|---|
The Role of Tβ4-POP-Ac-SDKP Axis in Organ Fibrosis.
Fibrosis is a pathological process in which parenchymal cells are necrotic and excess extracellular matrix (ECM) is accumulated due to dysregulation of tissue injury repair. Thymosin β4 (Tβ4) is a 43 amino acid multifunctional polypeptide that is involved in wound healing. Prolyl oligopeptidase (POP) is the main enzyme that hydrolyzes Tβ4 to produce its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) which is found to play a role in the regulation of fibrosis. Accumulating evidence suggests that the Tβ4-POP-Ac-SDKP axis widely exists in various tissues and organs including the liver, kidney, heart, and lung, and participates in the process of fibrogenesis. Herein, we aim to elucidate the role of Tβ4-POP-Ac-SDKP axis in hepatic fibrosis, renal fibrosis, cardiac fibrosis, and pulmonary fibrosis, as well as the underlying mechanisms. Based on this, we attempted to provide novel therapeutic strategies for the regulation of tissue damage repair and anti-fibrosis therapy. The Tβ4-POP-Ac-SDKP axis exerts protective effects against organ fibrosis. It is promising that appropriate dosing regimens that rely on this axis could serve as a new therapeutic strategy for alleviating organ fibrosis in the early and late stages. Topics: Fibrosis; Humans; Oligopeptides; Prolyl Oligopeptidases; Thymosin | 2022 |
Thymosin beta4 and its posttranslational modifications.
Thymosin beta(4) as well as the other members of the beta-thymosin family are important G-actin sequestering peptides. The chemical properties, the biosynthesis, and posttranslational modifications (PTMs) of these peptides are discussed. During biosynthesis of thymosin beta(4) the initiator methionine is removed and the N-terminus is acetylated. Research on proteomics revealed several acetylated lysine residues and two phosphorylated threonine residues. The enormous number of phosphorylable and acetylable sites in the human proteome raises the question about the biological significance of these PTMs in the context of beta-thymosins. Presently, this question cannot be answered because neither the concentration of these modified beta-thymosins in cells is known nor the consequences of the modifications on the biological function(s) of beta-thymosins have been studied yet. Thymosin beta(4) is also posttranslationally modified by transglutaminase forming covalent bonds with other molecules. Prolyl oligopeptidase generates ac-SDKP from thymosin beta(4). The concentration of C-terminal peptide fragments of thymosin beta(4) is elevated in the blood of patients with rheumatoid arthritis. Topics: Actins; Humans; Methionine; Oligopeptides; Peptide Fragments; Peptides; Thymosin; Transglutaminases | 2010 |
Overexpression of the natural tetrapeptide acetyl-N-ser-asp-lys-pro derived from thymosin beta4 in neoplastic diseases.
The natural tetrapeptide acetyl-ser-asp-lys-pro (AcSDKP) is formed in vivo by enzymatic cleavage of the N terminus of thymosin beta4 by prolyl oligopeptidase (POP). Recently, AcSDKP was shown to promote angiogenesis. Because of the critical role of neovascularization in cancer development, the levels of AcSDKP and POP activity in a number of different malignant tissues were investigated. Our studies revealed that AcSDKP levels were markedly elevated in neoplastic diseases including hematologic malignancies and solid neoplasms. Consistent with this finding, the enhanced activity of POP was also detected in all analyzed specimens of cancer tissues. Both these novel findings are in concert with the previously reported overexpression of thymosin beta4 in a large variety of malignant tumors and with its potential role in cancerogenesis. The physiological relevance of these findings awaits further studies; however, our first results strongly suggest a key role for AcSDKP in the pathogenesis of cancer. Topics: Animals; Biochemical Phenomena; Dipeptides; Mice; Neoplasms; Neovascularization, Pathologic; Oligopeptides; Prolyl Oligopeptidases; Serine Endopeptidases; Thymosin | 2010 |
PAI-1 and kidney fibrosis.
Substantial evidence demonstrates a link of increased plasminogen activator inhibitor-1 (PAI-1) and glomerulosclerosis and kidney fibrosis, providing a novel therapeutic option for prevention and treatment of chronic kidney diseases. Several mechanisms contributing to increased PAI-1 will be addressed, including classic key profibrotic factors such as the renin-angiotensin-system (RAS) and transforming growth factor-beta (TGF-b???and novel molecules identified by proteomic analysis, such as thymosin- b4. The fibrotic sequelae caused by increased PAI-1 in kidney depend not only on its classic inhibition of tissue-type and urokinase-type plasminogen activators (tPA and uPA), but also its influence on cell migration. Topics: Angiotensins; Animals; Chronic Disease; Disease Models, Animal; Fibrosis; Humans; Kidney Diseases; Mice; Oligopeptides; Organ Specificity; Plasminogen Activator Inhibitor 1; Renin-Angiotensin System; Thymosin; Transforming Growth Factor beta1 | 2009 |
Thymosin beta4 and Ac-SDKP: tools to mend a broken heart.
Thymosin beta4 - an endogenously occurring 43 amino acid peptide - has recently been shown to possess cardioprotective properties in the setting of acute myocardial infarction. This review focuses on the reported mechanisms of action through which Thymosin beta4 might accomplish this effect and the clinical prospects for its use as a therapeutic agent. Topics: Animals; Cardiotonic Agents; Humans; Myocardial Infarction; Oligopeptides; Thymosin | 2008 |
Therapeutic potential of thymosin-beta4 and its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) in cardiac healing after infarction.
Despite the numerous advances made in the prevention and treatment of cardiovascular diseases, there is a need for new strategies to repair and/or regenerate the myocardium after ischemia and infarction in order to prevent maladaptive remodeling and cardiac dysfunction. This article compiles and analyzes the available experimental data regarding the potential therapeutic effects of thymosin-beta4 and its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) in cardiac healing after myocardial infarction (MI) as well as discussing the possible mechanisms involved. The healing properties of thymosin-beta4 have been described in different types of tissues, such as the skin and cornea, and more recently it has been shown that thymosin-beta4 facilitates cardiac repair after infarction by promoting cell migration and myocyte survival. Additionally, the tetrapeptide Ac-SDKP was reported to reduce left ventricular fibrosis in hypertensive rats, reverse fibrosis and inflammation in rats with MI, and stimulate both in vitro and in vivo angiogenesis. Ac-SDKP also reduced cardiac rupture rate in mice post-MI. Some of the effects of Ac-SDKP, such as the enhancement of angiogenesis and the decrease in inflammation and collagenase activity, are similar to those described for thymosin-beta4. Thus, it is possible that Ac-SDKP could be mediating some of the beneficial effects of its precursor. Although the experimental evidence is very promising, there are no data available from a clinical trial supporting the use of thymosin-beta(4) or Ac-SDKP as means of healing the myocardium after MI in patients. Topics: Animals; Heart; Humans; Models, Biological; Myocardial Infarction; Myocardium; Oligopeptides; Thymosin; Ventricular Remodeling | 2006 |
16 other study(ies) available for thymosin-beta(4) and goralatide
Article | Year |
---|---|
Renal release of N-acetyl-seryl-aspartyl-lysyl-proline is part of an antifibrotic peptidergic system in the kidney.
The antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is released from thymosin-β4 (Tβ4) by the meprin-α and prolyl oligopeptidase (POP) enzymes and is hydrolyzed by angiotensin-converting enzyme (ACE). Ac-SDKP is present in urine; however, it is not clear whether de novo tubular release occurs or if glomerular filtration is the main source. We hypothesized that Ac-SDKP is released into the lumen of the nephrons and that it exerts an antifibrotic effect. We determined the presence of Tβ4, meprin-α, and POP in the kidneys of Sprague-Dawley rats. The stop-flow technique was used to evaluate Ac-SDKP formation in different nephron segments. Finally, we decreased Ac-SDKP formation by inhibiting the POP enzyme and evaluated the long-term effect in renal fibrosis. The Tβ4 precursor and the releasing enzymes meprin-α and POP were expressed in the kidneys. POP enzyme activity was almost double that in the renal medulla compared with the renal cortex. With the use of the stop-flow technique, we detected the highest Ac-SDKP concentrations in the distal nephron. The infusion of a POP inhibitor into the kidney decreased the amount of Ac-SDKP in distal nephron segments and in the proximal nephron to a minor extent. An ACE inhibitor increased the Ac-SDKP content in all nephron segments, but the increase was highest in the distal portion. The chronic infusion of a POP inhibitor increased kidney medullary fibrosis, which was prevented by Ac-SDKP. We conclude that Ac-SDKP is released by the nephron and is part of an important antifibrotic system in the kidney. Topics: Animals; Disease Models, Animal; Fibrosis; Kidney Diseases; Kidney Medulla; Male; Metalloendopeptidases; Nephrons; Oligopeptides; Prolyl Oligopeptidases; Rats, Sprague-Dawley; Serine Endopeptidases; Signal Transduction; Thymosin | 2019 |
The anti-inflammatory peptide Ac-SDKP is released from thymosin-β4 by renal meprin-α and prolyl oligopeptidase.
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a natural tetrapeptide with anti-inflammatory and antifibrotic properties. Previously, we have shown that prolyl oligopeptidase (POP) is involved in the Ac-SDKP release from thymosin-β4 (Tβ4). However, POP can only hydrolyze peptides shorter than 30 amino acids, and Tβ4 is 43 amino acids long. This indicates that before POP hydrolysis takes place, Tβ4 is hydrolyzed by another peptidase that releases NH2-terminal intermediate peptide(s) with fewer than 30 amino acids. Our peptidase database search pointed out meprin-α metalloprotease as a potential candidate. Therefore, we hypothesized that, prior to POP hydrolysis, Tβ4 is hydrolyzed by meprin-α. In vitro, we found that the incubation of Tβ4 with both meprin-α and POP released Ac-SDKP, whereas no Ac-SDKP was released when Tβ4 was incubated with either meprin-α or POP alone. Incubation of Tβ4 with rat kidney homogenates significantly released Ac-SDKP, which was blocked by the meprin-α inhibitor actinonin. In addition, kidneys from meprin-α knockout (KO) mice showed significantly lower basal Ac-SDKP amount, compared with wild-type mice. Kidney homogenates from meprin-α KO mice failed to release Ac-SDKP from Tβ4. In vivo, we observed that rats treated with the ACE inhibitor captopril increased plasma concentrations of Ac-SDKP, which was inhibited by the coadministration of actinonin (vehicle, 3.1 ± 0.2 nmol/l; captopril, 15.1 ± 0.7 nmol/l; captopril + actinonin, 6.1 ± 0.3 nmol/l; P < 0.005). Similar results were obtained with urinary Ac-SDKP after actinonin treatment. We conclude that release of Ac-SDKP from Tβ4 is mediated by successive hydrolysis involving meprin-α and POP. Topics: Animals; Blood Pressure; Captopril; Hydroxamic Acids; Kidney; Male; Metalloendopeptidases; Mice, Inbred C57BL; Mice, Knockout; Oligopeptides; Prolyl Oligopeptidases; Random Allocation; Rats, Sprague-Dawley; Serine Endopeptidases; Thymosin | 2016 |
Effects of thymosin β4 and its N-terminal fragment Ac-SDKP on TGF-β-treated human lung fibroblasts and in the mouse model of bleomycin-induced lung fibrosis.
Thymosin β4 (Tβ4) and its amino-terminal fragment comprising N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) have been reported to act as anti-inflammatory and anti-fibrotic agents in vitro and in vivo. In recent papers, we have shown that Tβ4 exerts a widely protective role in mice treated with bleomycin, and in particular, we have demonstrated its inhibitory effects on both inflammation and early fibrosis.. In this study, the putative anti-proliferative and anti-fibrogenic effects of Tβ4 and Ac-SDKP were evaluated in vitro. In addition, the effects of Tβ4 up to 21 days were evaluated in the bleomycin mouse model of lung fibrosis.. We utilized both control and TGF-β-stimulated primary human lung fibroblasts isolated from both idiopathic pulmonary fibrosis (IPF) and control tissues. The in vivo effects of Tβ4 were assessed in CD1 mice treated with bleomycin.. In the in vitro experiments, we observed significant anti-proliferative effects of Ac-SDKP in IPF fibroblasts. In those cells, Ac-SDKP significantly inhibited TGF-β-induced α-SMA and collagen expression, hallmarks of fibroblast differentiation into myofibroblasts triggered by TGF-β. In vivo, despite its previously described protective role in mice treated with bleomycin at 7 days, Tβ4 failed to prevent fibrosis induced by the drug at 14 and 21 days.. We conclude that, compared to Tβ4, Ac-SDKP may have greater potential as an anti-fibrotic agent in the lung. Further in vivo experiments are warranted. Topics: Animals; Anti-Inflammatory Agents; Bleomycin; Cells, Cultured; Disease Models, Animal; Fibroblasts; Humans; Lung; Male; Mice; Oligopeptides; Pneumonia; Protein Structure, Tertiary; Pulmonary Fibrosis; Thymosin; Transforming Growth Factor beta | 2015 |
Peptide fragment of thymosin β4 increases hippocampal neurogenesis and facilitates spatial memory.
Although several studies have suggested the neuroprotective effect of thymosin β4 (TB4), a major actin-sequestering protein, on the central nervous system, little is understood regarding the action of N-acetyl-serylaspartyl-lysyl-proline (Ac-SDKP), a peptide fragment of TB4 on brain function. Here, we examined neurogenesis-stimulative effect of Ac-SDKP. Intrahippocampal infusion of Ac-SDKP facilitated the generation of new neurons in the hippocampus. Ac-SDKP-treated mouse hippocampus showed an increase in β-catenin stability with reduction of glycogen synthase kinase-3β (GSK-3β) activity. Moreover, inhibition of vascular endothelial growth factor (VEGF) signaling blocked Ac-SDKP-facilitated neural proliferation. Subchronic intrahippocampal infusion of Ac-SDKP also increased spatial memory. Taken together, these data demonstrate that Ac-SDKP functions as a regulator of neural proliferation and indicate that Ac-SDKP may be a therapeutic candidate for diseases characterized by neuronal loss. Topics: Animals; Cell Count; Cell Proliferation; Doublecortin Domain Proteins; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Glycogen Synthase Kinase 3; HeLa Cells; Hippocampus; Humans; Male; Maze Learning; Mice; Mice, Inbred C57BL; Microtubule-Associated Proteins; Neurogenesis; Neuropeptides; Neuroprotective Agents; Oligopeptides; Phosphopyruvate Hydratase; Spatial Memory; Thymosin | 2015 |
Thymosin β4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis.
Previously, we found thymosin β4 (Tβ4) is upregulated in glomerulosclerosis and required for angiotensin II-induced expression of plasminogen activator inhibitor-1 (PAI-1) in glomerular endothelial cells. Tβ4 has beneficial effects in dermal and corneal wound healing and heart disease, yet its effects in kidney disease are unknown. Here we studied renal fibrosis in wild-type and PAI-1 knockout mice following unilateral ureteral obstruction to explore the impact of Tβ4 and its prolyl oligopeptidase tetrapeptide degradation product, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), in renal fibrosis. Additionally, we explored interactions of Tβ4 with PAI-1. Treatment with Ac-SDKP significantly decreased fibrosis in both wild-type and PAI-1 knockout mice, as observed by decreased collagen and fibronectin deposition, fewer myofibroblasts and macrophages, and suppressed profibrotic factors. In contrast, Tβ4 plus a prolyl oligopeptidase inhibitor significantly increased fibrosis in wild-type mice. Tβ4 alone also promoted repair and reduced late fibrosis in wild-type mice. Importantly, both profibrotic effects of Tβ4 plus the prolyl oligopeptidase inhibitor, and late reparative effects of Tβ4 alone, were absent in PAI-1 knockout mice. Thus, Tβ4 combined with prolyl oligopeptidase inhibition is consistently profibrotic, but by itself has antifibrotic effects in late-stage fibrosis, while Ac-SDKP has consistent antifibrotic effects in both early and late stages of kidney injury. These effects of Tβ4 are dependent on PAI-1. Topics: Animals; Collagen; Disease Models, Animal; Fibronectins; Fibrosis; Kidney; Kidney Diseases; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myofibroblasts; Oligopeptides; Plasminogen Activator Inhibitor 1; Prolyl Oligopeptidases; Serine Endopeptidases; Serine Proteinase Inhibitors; Thymosin; Time Factors; Ureteral Obstruction; Urological Agents | 2013 |
Prolyl oligopeptidase induces angiogenesis both in vitro and in vivo in a novel regulatory manner.
BACKGROUND AND PURPOSE A serine protease, prolyl oligopeptidase (POP) has been reported to be involved in the release of the pro-angiogenic tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (Ac-SDKP) from its precursor, 43-mer thymosin β4 (Tβ4). Recently, it was shown that both POP activity and the levels of Ac-SDKP are increased in malignant tumours. The aim of this study was to clarify the release of Ac-SDKP, and test if POP and a POP inhibitor, 4-phenyl-butanoyl-L-prolyl-2(S)-cyanopyrrolidine (KYP-2047), can affect angiogenesis. EXPERIMENTAL APPROACH We used HPLC for bioanalytical and an enzyme immunoassay for pharmacological analysis. Angiogenesis of human umbilical vein endothelial cells was assessed in vitro using a 'tube formation' assay and in vivo using a Matrigel plug assay (BD Biosciences, San Jose, CA, USA) in adult male rats. Moreover, co-localization of POP and blood vessels was studied. KEY RESULTS We showed the sequential hydrolysis of Tβ4: the first-step hydrolysis by proteases to <30-mer peptides is followed by an action of POP. Unexpectedly, POP inhibited the first hydrolysis step, revealing a novel regulation system. POP with Tβ4 significantly induced, while KYP-2047 effectively prevented, angiogenesis in both models compared with Tβ4 addition itself. POP and endothelial cells were abundantly co-localized in vivo. CONCLUSIONS AND IMPLICATIONS We have now revealed that POP is a second-step enzyme in the release of Ac-SDKP from Tβ4, and it has novel autoregulatory effect in the first step. Our results also advocate a role for Ac-SDKP in angiogenesis, and suggest that POP has a pro-angiogenic role via the release of Ac-SDKP from its precursor Tβ4 and POP inhibitors can block this action. Topics: Angiogenesis Inhibitors; Animals; Biocompatible Materials; Collagen; Drug Combinations; Endothelial Cells; Growth Inhibitors; Humans; Kidney; Laminin; Male; Neovascularization, Pathologic; Oligopeptides; Proline; Prolyl Oligopeptidases; Proteoglycans; Rats; Rats, Inbred WF; Serine Endopeptidases; Serine Proteinase Inhibitors; Thymosin; Umbilical Veins | 2011 |
Thymosin beta4 and AcSDKP inhibit the proliferation of HL-60 cells and induce their differentiation and apoptosis.
Our previous works have shown that bone marrow stromal cells secrete thymosin beta4 (Tbeta4) and AcSDKP. Tbeta4 and AcSDKP are existed in the conditioned medium of bone marrow endothelial cells. They exerted inhibitory effects on hematopoietic cells and then had protective effect on the early hematopoietic cells, which were cultured in the presence of hematopoietic stimulators. Thymosin beta4 consists of 43 peptides with a molecular weight of 4963. It contains at its N-terminal end the sequence of the acetylated tetrapeptide Ac-N-Ser-Asp-Lys-Pro (AcSDKP). This study was performed to evaluate the effect of Tbeta4 and AcSDKP on the growth of HL-60 cells. It was showed that Tbeta4 (10(-11)-10(-7)mol/L) and AcSDKP (10(-11)-10(-7)mol/L) had the dose-dependent inhibitory effect on the proliferation of HL-60 cells. Based on cell morphology and NBT reduction, Tbeta4 and AcSDKP induced differentiation of HL-60 cells. Morphologic and DNA fragment analysis proved that Tbeta4 and AcSDKP induced apoptosis of HL-60 cells. In order to analyze the mechanism of the effects of Tbeta4 and AcSDKP, intracellular free Ca(2+) concentration ([Ca(2+)](i)) of HL-60 leukemic cells was tested and Atlas cDNA Expression Array was performed. The results showed that Tbeta4 and AcSDKP could increased [Ca(2+)](i) by stimulating the release of Ca(2+) from intracellular Ca(2+) pool. Moreover, AcSDKP could also elicit a potent extracelluar calcium influx in HL-60 cells. Tbeta4 could also change apoptotic-related gene expression in leukemic cells, and resulted in the inhibition of proliferation and induction of differentiation and apoptosis of leukemic cells. Topics: Animals; Apoptosis; Calcium; Cattle; DNA Fragmentation; HL-60 Cells; Humans; Leukemia, Myeloid; Oligonucleotide Array Sequence Analysis; Oligopeptides; Thymosin; Up-Regulation | 2006 |
Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP.
N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a ubiquitous tetrapeptide hydrolyzed almost exclusively by angiotensin-converting enzyme (ACE). Chronic treatment with Ac-SDKP decreases cardiac and renal fibrosis and inflammatory cell infiltration in hypertensive rats. However, very little is known about endogenous synthesis of Ac-SDKP, except that thymosin-beta4 may be the most likely precursor. Two enzymes are potentially able to release Ac-SDKP from thymosin-beta4: prolyl oligopeptidase (POP) and endoproteinase asp-N. POP is widely present and active in several tissues and biological fluids, whereas endoproteinase asp-N appears to be lacking in mammals. Therefore, we hypothesized that POP is the main enzyme involved in synthesizing the antifibrotic peptide Ac-SDKP. We investigated in vitro and in vivo production of Ac-SDKP. Using kidney cortex homogenates, we observed that Ac-SDKP was generated in a time-dependent manner in the presence of exogenous thymosin-beta4, and this generation was significantly inhibited by several POP inhibitors (POPi), Z-prolyl-prolinal, Fmoc-prolyl-pyrrolidine-2-nitrile, and S17092. Long-term administration of S17092 in rats significantly decreased endogenous levels of Ac-SDKP in the plasma (from 1.76+/-0.2 to 1.01+/-0.1 nM), heart (from 2.31+/-0.21 to 0.83+/-0.09 pmol/mg protein), and kidneys (from 5.62+/-0.34 to 2.86+/-0.76 pmol/mg protein). As expected, ACE inhibitors significantly increased endogenous levels of Ac-SDKP in the plasma, heart, and kidney, whereas coadministration of POPi prevented this increase. We concluded that POP is the main enzyme responsible for synthesis of the antifibrotic peptide Ac-SDKP. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Captopril; Dipeptides; Indoles; Kidney; Kidney Cortex; Male; Myocardium; Nitriles; Oligopeptides; Organ Specificity; Proline; Prolyl Oligopeptidases; Protease Inhibitors; Random Allocation; Rats; Rats, Sprague-Dawley; Serine Endopeptidases; Thiazoles; Thiazolidines; Thymosin | 2004 |
Thymosin beta 4 and its N-terminal tetrapeptide, AcSDKP, inhibit proliferation, and induce dysplastic, non-apoptotic nuclei and degranulation of mast cells.
Thymosin beta4 (Tbeta4), a 5 kDa polypeptide, is a member of the beta-thymosin family. It acts as the principal intracellular G-actin sequestering peptide and exhibits extracellular functions in angiogenesis and wound healing. The N-terminus of Tbeta4 contains a bioactive tetrapeptide, acSDKP, a negative regulator of hematopoietic stem-cell proliferation. Here, we show that both peptides inhibit mast-cell proliferation over the concentration range of 10(-6) to 10(-17) M with the maximum effect of both at 10(-14) M. Both Tbeta4 and acSDKP caused dysplastic mast-cell nuclei that were confirmed by DAPI fluorescent staining. Flow-cytometric analysis of ploidy revealed that the dysplastic nuclei were not multinucleated, but fragmented nuclei in G2 growth arrest. We could further demonstrate that 10(-8) or 10(-14) M Tbeta4 or acSDKP induce mast-cell degranulation. A concentration of 10(-8) M Tbeta4 or acSDKP caused 57 or 89% degranulation, respectively. A number of tryptic fragments of Tbeta4 were assayed beside intact Tbeta4 and the tetrapeptide, and found to be inactive. Topics: Animals; Apoptosis; Bone Marrow Cells; Cell Degranulation; Cell Nucleus; Cell Proliferation; Cells, Cultured; Growth Inhibitors; Mast Cells; Mice; Mice, Inbred BALB C; Oligopeptides; Peptide Fragments; Thymosin | 2004 |
Bone marrow endothelial cells secrete thymosin beta4 and AcSDKP.
Bone marrow endothelial cells are the essential component of the bone marrow microenvironment. They produce many kinds of cytokines, including stimulators and inhibitors. Many researchers have suggested that in the presence of endothelial cell layer, CD34+CD38- cells are capable of expansion. The ability of the endothelial cell layer to protect hematopoietic stem cells from extensive differentiation may be related to the inhibitors derived from endothelial cells. The aim of the present study was to determine whether the inhibitors thymosin beta4 and AcSDKP are elaborated by murine bone marrow endothelial cells. Murine bone marrow endothelial cells (mBMECs) were cultured in serum-free conditioned medium. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to analyze the differential expression of the thymosin-beta gene, and reverse phase high-performance chromatography (HPLC) and mass spectroscopy were used to determine the concentration of thymosin beta4 (Tbeta4) and AcSDKP in EC lysate and in the medium (mBMEC-CM). Colony-forming unit granulocyte-macrophage (CFU-GM) colony assays were used to examine the effect of components (mw 3-10 kD, <3 kD) of mBMEC-CM, thymosin beta4, and AcSDKP on the proliferation of hematopoietic cells.mBMECs expressed Tbeta4 mRNA. In EC lysate and mBMEC-CM, Tbeta4 and AcSDKP were detected. After adding protease inhibitors, the concentration of Tbeta4 in EC lysate increased significantly, while the concentration of AcSDKP decreased. mBMEC-CM (mw 3-10 kD) had no effect on the formation of CFU-GM. However, mBMEC-CM (mw <3 kD) could inhibit the growth of CFU-GM. Tbeta4 (10(-11) approximately 10(-7)mol/L) and AcSDKP (10(-11) approximately 10(-5)mol/L) had dose-dependent inhibitory effects on the growth of CFU-GM. Angiotensin converting enzyme (ACE), the enzyme degrading AcSDKP, could partially eliminate the inhibitory effect of mBMEC-CM (mw <3 kD) on CFU-GM.BMECs express and secrete Tbeta4 and AcSDKP. Tbeta4 exists in the 3-10 kD component of mBMEC-CM, while AcSDKP exists in the <3 kD component of ECCM. Both components exert inhibitory effects on the proliferation of hematopoietic progenitors. Topics: Animals; Bone Marrow Cells; Cells, Cultured; Chromatography, High Pressure Liquid; Colony-Forming Units Assay; Culture Media, Conditioned; Culture Media, Serum-Free; Endothelium; Gene Expression Regulation; Hematopoiesis; Mice; Oligopeptides; Peptidyl-Dipeptidase A; Protease Inhibitors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Thymosin | 2001 |
Comparison of the effects of AcSDKP, thymosin beta4, macrophage inflammatory protein 1alpha and transforming growth factor beta on human leukemic cells.
We have compared the effects of AcSDKP, Thymosin beta4 (Tbeta4), MIP1alpha and TGFbeta on acute myeloid leukemia (AML) and B-lineage acute lymphoid leukemia (B-ALL) cells using liquid cultures in the presence of GM-CSF, IL-3 and SCF for AML cells and IL-3 and IL-7 for ALL cells. Each molecule was added daily and cell proliferation was evaluated on day 3 by thymidine incorporation. Whereas TGFbeta was found inhibitory in all the AML and B-ALL cases studied, MIP1alpha was inhibitory in 6/12 AML cases and had no effect on B-ALL cells. AcSDKP and Tbeta4 showed an inhibitory effect in a few cases but only at high doses which were inactive on normal cells. Thus, our study not only confirms the effect of TGFbeta, MIP1alpha and AcSDKP on AML cells but also provides new data concerning their effect on B-ALL and the possible inhibitory effect of AcSDKP at high doses. Furthermore, we show for the first time the effect of Tbeta4 on leukemic cells. Altogether, our data indicate differences of sensitivity of leukemic cells to negative regulators, some leukemias being inhibited by one or several of these molecules whereas others were unresponsive to all used. The clinical relevance of these observations still remains to be determined. Topics: Adolescent; Adult; Aged; Burkitt Lymphoma; Cell Division; Chemokine CCL4; Child; Child, Preschool; Female; Humans; Infant; Leukemia, Myeloid, Acute; Macrophage Inflammatory Proteins; Male; Middle Aged; Oligopeptides; Thymosin; Transforming Growth Factor beta; Tumor Cells, Cultured | 1997 |
Thymosin beta4, inhibitor for normal hematopoietic progenitor cells.
Thymosin beta4 (Tbeta4), isolated from the calf thymus fraction 5, has a ubiquitous localization and plays a pleiotropic role in both the immune and nonimmune systems. Because it contains at its N-terminal end the sequence of a known inhibitor of hematopoiesis, the acetylated tetrapeptide Ac-N-Ser-Asp-Lys-Pro (AcSDKP, Goralatide), we have assayed Tbeta4 on human hematopoietic cells. We demonstrate that it inhibits normal bone marrow progenitor cell growth; indeed, it decreased the growth of both granulo-macrophagic and erythroid progenitors and reduces their percentage in S phase. Furthermore, we show that Tbeta4 reduces both the clonogenicity and the cell proliferation of purified CD34+ cells induced by a combination of seven growth factors. Although Tbeta4's inhibitory effect is very similar to that of AcSDKP, we demonstrate, using neutralizing antibodies and a truncated form of Tbeta4 devoid of the AcSDKP sequence, that the inhibitory effect of Tbeta4 is not mediated by the sequence AcSDKP. These data indicate that Tbeta4 is a novel inhibitor for human normal hematopoietic progenitors. Topics: Amino Acid Sequence; Animals; Antibodies, Monoclonal; Cattle; Cells, Cultured; Colony-Forming Units Assay; Erythroid Precursor Cells; Growth Inhibitors; Hematopoietic Cell Growth Factors; Hematopoietic Stem Cells; Humans; Molecular Sequence Data; Oligopeptides; Recombinant Proteins; Thymosin | 1996 |
The antiproliferative activity of the tetrapeptide Acetyl-N-SerAspLysPro, an inhibitor of haematopoietic stem cell proliferation, is not mediated by a thymosin beta 4-like effect on actin assembly.
Acetyl-N-SerAspLysPro (AcSDKP), known as a negative regulator of haematopoiesis, has been principally reported as an inhibitor of haematopoietic pluripotent stem cell proliferation. The tetrapeptide sequence is identical to the N-terminus of thymosin beta 4 (T beta 4), from which it has been suggested that it may be derived. Recently, evidence was shown that T beta 4 plays a role as a negative regulator of actin polymerization leading to the sequestration of its monomeric form. The structural similarity between the N-terminus of T beta 4 and AcSDKP has raised the possibility that AcSDKP may also participate in intracellular events leading to actin sequestration. The effect of T beta 4 on the proliferation of haematopoietic cells was compared to that of AcSDKP. The results revealed that T beta 4, like AcSDKP, exerts an inhibitory effect on the entry of murine primitive bone marrow cells into cell cycle in vitro. Qualitative electrophoretic analysis and quantitative polymerization assays were used to investigate the role of AcSDKP in actin polymerization. AcSDKP does not affect actin assembly at concentrations up to 50 microM, and does not compete with T beta 4 for binding to G-actin. These results suggest that AcSDKP is not involved in cell cycle regulation via an effect on the process of actin polymerization. Topics: Actin Cytoskeleton; Actins; Animals; Bone Marrow; Bone Marrow Cells; Cell Division; Growth Inhibitors; Hematopoiesis; Hematopoietic Stem Cells; Mice; Mice, Inbred CBA; Oligopeptides; Thymosin | 1996 |
Distribution of a negative regulator of haematopoietic stem cell proliferation (AcSDKP) and thymosin beta 4 in mouse tissues.
A competitive enzyme immunoassay using acetylcholinesterase as tracer for thymosin beta 4, has been developed. Using this assay and a previously described EIA for AcSDKP, a negative regulator of pluripotent haematopoietic stem cell proliferation, the levels of these two peptides were determined in mouse tissue extracts. The combination of EIAs with different HPLC procedures validated these methods and clearly demonstrated the ubiquity of these peptides in mouse tissues. Similar results are reported for rabbit thymus which suggest different hypotheses for AcSDKP biosynthesis. Topics: Amino Acid Sequence; Animals; Cell Division; Cross Reactions; Female; Hematopoietic Stem Cells; Immune Sera; Immunoenzyme Techniques; Mice; Mice, Inbred BALB C; Molecular Sequence Data; Oligopeptides; Organ Specificity; Rats; Sequence Homology, Nucleic Acid; Thymosin | 1991 |
Formation of acetyl-Ser-Asp-Lys-Pro, a new regulator of the hematopoietic system, through enzymatic processing of thymosin beta 4.
The demonstration that AcSDKP, a new regulator of the hematopoietic system, is formed in the bone marrow by a one-step enzymatic maturation processing of thymosin beta 4 (T beta 4) is presented. AcSDKP and T beta 4 were both detected in bone marrow cells (BMC). Incubation of [3H]T beta 4 with either intact or lysed BMC led to the formation of [3H]AcSDKP, whereas the labeled tetrapeptide was not degraded under these conditions. Model enzymatic degradation of T beta 4 carried out with bacterial enzymes suggests that a mammalian endoproteinase Asp-N might be involved in the formation of AcSDKP through the specific cleavage of the Pro4-Asp5 peptidic bond of T beta 4. In contrast, alpha-prolyl-endopeptidase was ineffective in carrying out a similar processing. Topics: Amino Acid Sequence; Animals; Bone Marrow; Chromatography, High Pressure Liquid; Endopeptidases; Flavobacterium; Hematopoiesis; Kinetics; Molecular Sequence Data; Oligopeptides; Prolyl Oligopeptidases; Rabbits; Serine Endopeptidases; Thymosin | 1991 |
Involvement of thymosin beta 4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system.
It is shown that AcSDKP a new regulator of the hematopoietic system can be generated from thymosin beta 4 by a one-step enzymatic cleavage in vitro and in vivo. AcSDKP and T beta 4 were both detected in bone marrow cells (BMC). Incubation of [3H]T beta 4 with either intact or lysed BMC led to the formation of [3H]AcSDKP whereas the labelled tetrapeptide was not degraded under these conditions. Model enzymatic degradation of T beta 4 carried out with bacterial enzymes suggests that a mammalian endoproteinase Asp-N might be involved in the formation of AcSDKP through the specific cleavage of the 4Pro-5 Asp peptide bond of T beta 4. Topics: Amino Acid Sequence; Animals; Bone Marrow; Chromatography, High Pressure Liquid; Endopeptidases; Hematopoietic Stem Cells; Metalloendopeptidases; Molecular Sequence Data; Oligopeptides; Rabbits; Thymosin | 1990 |