thromboxane-b2 and ramatroban

thromboxane-b2 has been researched along with ramatroban* in 4 studies

Other Studies

4 other study(ies) available for thromboxane-b2 and ramatroban

ArticleYear
11-Dehydro-thromboxane B2, a stable thromboxane metabolite, is a full agonist of chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) in human eosinophils and basophils.
    The Journal of biological chemistry, 2004, Feb-27, Volume: 279, Issue:9

    Thromboxane (TX) A(2), a cyclooxygenase-derived mediator involved in allergic responses, is rapidly converted in vivo to a stable metabolite, 11-dehydro-TXB(2), which is considered to be biologically inactive. In this study, we found that 11-dehydro-TXB(2), but not the TXA(2) analogue U46,619 or TXB(2), activated eosinophils and basophils, as assayed by flow cytometric shape change. 11-Dehydro-TXB(2) was also chemotactic for eosinophils but did not induce, nor inhibit, platelet aggregation. Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) is an important chemoattractant receptor expressed by eosinophils, basophils, and TH2 lymphocytes, and prostaglandin (PG)D(2) has been shown to be its principal ligand. 11-Dehydro-TXB(2) induced calcium flux mainly from intracellular stores in eosinophils, and this response was desensitized after stimulation with PGD(2) but not other eosinophil chemoattractants. Shape change responses of eosinophils and basophils to 11-dehydro-TXB(2) were inhibited by the thromboxane (TP)/CRTH2 receptor antagonist ramatroban, but not the selective TP antagonist SQ29,548, and were insensitive to pertussis toxin. The phospholipase C inhibitor U73,122 attenuated both 11-dehydro-TXB(2)- and PGD(2)-induced shape change. 11-Dehydro-TXB(2) also induced the chemotaxis of BaF/3 cells transfected with hCRTH2 but not naive BaF/3 cells. At a threshold concentration, 11-dehydro-TXB(2) had no antagonistic effect on CRTH2-mediated responses as induced by PGD2. These data show that 11-dehydro-TXB(2) is a full agonist of the CRTH2 receptor and hence might cause CRTH2 activation in cellular contexts where PGD-synthase is not present. Given its production in the allergic lung, antagonism of the 11-dehydro-TXB(2)/CRTH2axis may be of therapeutic relevance.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Basophils; Bridged Bicyclo Compounds, Heterocyclic; Calcium; Carbazoles; Cell Size; Chemotaxis, Leukocyte; Enzyme Inhibitors; Eosinophils; Fatty Acids, Unsaturated; Flow Cytometry; Humans; Hydrazines; Pertussis Toxin; Prostaglandin D2; Receptors, Immunologic; Receptors, Prostaglandin; Sulfonamides; Thromboxane B2; Transfection; Type C Phospholipases

2004
Acute cholestasis-induced renal failure: effects of antioxidants and ligands for the thromboxane A2 receptor.
    Kidney international, 1999, Volume: 55, Issue:1

    Acute biliary obstruction is associated with the development of renal impairment and oxidative stress. The F2-isoprostanes, formed during oxidant injury, are renal vasoconstrictors acting via thromboxane (TX)-like receptors. We determined whether the formation of F2-isoprostanes is increased in experimental cholestasis and whether thiol containing antioxidants or ligands for the TXA2 receptor could improve renal function.. The effects on renal function of acute bile duct ligation (BDL) in the rat were studied for two days. The consequences of administration of N-acetylcysteine (NAC), alpha-lipoic acid (LA), the TX receptor antagonist (TXRA) BAYu3405, or placebo were then examined.. BDL caused a reduction in creatinine clearance from 1.10 +/- 0.05 to 0.55 +/- 0.05 ml/min and sodium excretion from 52 +/- 3 to 17 +/- 3 micromol/hr. Urinary F2-isoprostanes increased from 14 +/- 2 to 197 +/- 22 pg/ml following BDL. Renal functional changes were ameliorated by NAC (creatinine clearance 0.73 +/- 0.05 ml/min), LA (0.64 +/- 0.03 ml/min), and a TXRA (0.90 +/- 0.15 ml/min); P < 0.05. Similarly, sodium excretion was increased from 17 +/- 3 micromol/hr (placebo) to 34 +/- 3 micromol/hr (NAC), 29 +/- 3 micromol/hr (LA), and 38 +/- 5 micromol/hr (TXRA); P < 0.005. Hepatic glutathione concentrations increased from 6.5 +/- 0.3 micromol/g (normal liver) to 8.8 +/- 0.5 micromol/g (NAC) and 7.7 +/- 0.3 micromol/g (LA), P < 0.01. However, only LA markedly inhibited F2-isoprostane formation (197 +/- 22 to 36 +/- 11 pg/ml creatinine clearance; P < 0.05). Urinary TXB2 excretion was elevated after BDL (2.2 +/- 0.5 to 111.1 +/- 20.3 pg/min) but was unaffected by NAC and LA.. NAC, LA, and TXRA can partially prevent renal dysfunction in experimental cholestasis. The effects of the antioxidants are independent of their ability to inhibit lipid peroxidation or TX synthesis.

    Topics: Acetylcysteine; Acute Kidney Injury; Animals; Antioxidants; Carbazoles; Cholestasis; Dinoprost; Glutathione; Ligands; Lipid Peroxidation; Male; Rats; Rats, Sprague-Dawley; Receptors, Thromboxane; Sodium; Sulfonamides; Thioctic Acid; Thromboxane B2

1999
8-Epi-PGF2alpha induces airflow obstruction and airway plasma exudation in vivo.
    American journal of respiratory and critical care medicine, 1997, Volume: 155, Issue:2

    8-Epi-prostaglandin F2alpha (8-epi-PGF2alpha) is an F2-isoprostane formed mainly via noncyclooxygenase pathways in vivo. We investigated whether 8-epi-PGF2alpha has any effect on airflow obstruction and plasma exudation in vivo. Airflow obstruction was quantified by measuring lung resistance (RL) in anesthetized and ventilated guinea pigs, and plasma exudation was quantified by the Evans Blue dye method (20 mg/kg intravenously). Intratracheal instillation of 8-epi-PGF2alpha (1 nmol or 10 nmol) caused dose-related increases in RL. Furthermore, the higher dose of 8-epi-PGF2alpha produced Evans Blue dye extravasation in main bronchi and intrapulmonary airways. A prostanoid TP-receptor antagonist, BAY u3405 (1 mg/kg intravenously), abolished the airway effects of 8-epi-PGF2alpha (10 nmol). A thromboxane A2 (TxA2) synthase inhibitor, OKY-406 (30 mg/kg intravenously), significantly attenuated these effects of 8-epi-PGF2alpha (10 nmol). The level of TxB2, a stable TxA2 metabolite, increased in bronchoalveolar lavage fluid (BALF) after 8-epi-PGF2alpha instillation. We conclude that 8-epi-PGF2alpha causes airflow obstruction and plasma exudation in vivo. This effect may be mediated primarily via prostanoid TP-receptors, and a secondary generation of TxA2 may be involved in part of the airway responses in 8-epi-PGF2alpha in the guinea pig.

    Topics: Airway Obstruction; Animals; Bronchoalveolar Lavage Fluid; Carbazoles; Dinoprost; Guinea Pigs; Histamine Antagonists; Male; Methacrylates; Platelet Aggregation Inhibitors; Sulfonamides; Thromboxane A2; Thromboxane B2; Vasoconstrictor Agents

1997
Beneficial effects of BAY u3405, a novel thromboxane A2 receptor antagonist, in splanchnic artery occlusion shock.
    Pharmacology, 1994, Volume: 49, Issue:6

    Splanchnic artery occlusion shock was induced in male anaesthetized rats by clamping the splanchnic artery for 45 min. The arteries were then released and survival rate, mean survival time, mean arterial blood pressure, plasma levels of thromboxane B2 and 6-keto-PGF1 alpha, macrophage phagocytosis activity and plasma levels of myocardial depressant factor were evaluated. In addition, the neutrophilic infiltrate was quantified in the ileum and lung using a myeloperoxidase (MPO) assay. Sham splanchnic-artery-occlusion-shocked rats were used as controls. Splanchnic-artery-occlusion-shocked rats died within 93 +/- 7 min, while all sham-shocked animals survived more than 3 h. Splanchnic artery occlusion shock caused changes in mean arterial blood pressure, significantly increased the plasma levels of thromboxane B2 (7.5 +/- 1.3 ng/ml; p < 0.001 vs. sham), 6-keto-PGF1 alpha (8.9 +/- 1.7 ng/ml; p < 0.001 vs. sham) and myocardial depressant factor (114 +/- 11 U/ml), and reduced macrophage phagocytosis. Furthermore, MPO activity was significantly elevated (0.12 +/- 0.03 x 10(-3) and 1.8 +/- 0.5 x 10(-3) U/g protein in the ileum and lung, respectively) 70 min after starting reperfusion. Administration of BAY u3405, a novel thromboxane A2 receptor antagonist (30 mg/kg i.v., 30 min before occlusion), significantly increased survival time (187 +/- 3.7 min) and survival rate, improved mean arterial blood pressure, reduced the plasma levels of myocardial depressant factor (54 +/- 3 U/ml), partially restored macrophage phagocytosis and lowered MPO activity in both the ileum and the lung. Our data are consistent with an involvement of thromboxane A2 in splanchnic artery occlusion shock and suggest that BAY u3405 might be of benefit in low-flow states such as circulatory shock.

    Topics: 6-Ketoprostaglandin F1 alpha; Animals; Arterial Occlusive Diseases; Blood Pressure; Carbazoles; Macrophages; Male; Myocardial Depressant Factor; Peroxidase; Phagocytosis; Rats; Rats, Sprague-Dawley; Receptors, Thromboxane; Shock; Splanchnic Circulation; Sulfonamides; Survival Rate; Thromboxane A2; Thromboxane B2

1994