thromboxane-b2 and 13-hydroxy-9-11-octadecadienoic-acid

thromboxane-b2 has been researched along with 13-hydroxy-9-11-octadecadienoic-acid* in 3 studies

Other Studies

3 other study(ies) available for thromboxane-b2 and 13-hydroxy-9-11-octadecadienoic-acid

ArticleYear
Omega-6-derived oxylipin changes in serum of patients with hepatitis B virus-related liver diseases.
    Metabolomics : Official journal of the Metabolomic Society, 2018, 01-31, Volume: 14, Issue:3

    Chronic hepatitis B virus (HBV) infection is the main etiologic risk factor for hepatocellular carcinoma (HCC). Early studies indicated that the increase of omega-6-derived oxylipins may be involved in the pathogenesis of HBV-related HCC, yet their changes during the distinct clinical phases of chronic HBV infection remain unclear. To fill this gap, in this study we investigated the omega-6-derived oxylipin profiles in patients with three major clinical stages of chronic HBV infection (chronic hepatitis B, liver cirrhosis, and HCC).. Eighteen omega-6-derived oxylipins were quantified in serum samples of 34 patients with chronic hepatitis B, 46 patients with HBV-related liver cirrhosis, 38 patients with HBV-related HCC, and 50 healthy controls using liquid chromatography tandem mass spectrometry.. Seven oxylipins were found to be altered in patients with HBV-related liver diseases, including 9,10-dihydroxyoctadecenoic acid (9,10-DiHOME), 12,13-DiHOME, 14,15-dihydroxyeicosatrienoic acid (14,15-DiHETrE), 13-hydroxyoctadecadienoic acid (13-HODE), 12-hydroxyeicosatetraenoic acid (12-HETE), 11-HETE, and thromboxane B. This study for the first time shows the correlations between CYP450-derived oxylipins and the progression of chronic HBV infection, and sheds a new light on the surveillance of HBV-related live diseases using oxylipins.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Adult; Aged; Biomarkers, Tumor; Carcinoma, Hepatocellular; Female; Hepatitis B, Chronic; Humans; Linoleic Acids; Liver Cirrhosis; Liver Neoplasms; Male; Middle Aged; Oleic Acids; Oxylipins; Thromboxane B2

2018
Antiplatelet effects of conjugated linoleic acid isomers.
    Biochimica et biophysica acta, 1999, May-18, Volume: 1438, Issue:2

    Conjugated diene isomers of linoleic acid (CLA) are normal constituents of certain foods and exhibit anticarcinogenic and antiatherogenic properties. In the present study, the effects of several CLA isomers on human platelet aggregation and arachidonic acid metabolism were examined. It was found that 9c,11t-CLA, 10t, 12c-CLA and 13-hydroxy-9c,11t-octadecadienoic acid (13-HODE) inhibited arachidonic acid- and collagen-induced platelet aggregation with I50s in the 5-7 microM range. The nonconjugated 9c, 12c-LA was about 300% and 50%, respectively, less potent an inhibitor with these aggregating agents. Using either thrombin or the calcium ionophore A23187 as aggregating agents, a CLA isomer mix was also found to be more inhibitory than 9c,12c-LA. The 9c,11t- and 10t,12c-CLA isomers as well as the CLA isomer mix inhibited formation of the proaggregatory cyclooxygenase-catalyzed product TXA2, as measured by decreased production of its inactive metabolite [14C]TXB2 from exogenously added [14C]arachidonic acid (I50s=9-16 microM). None of the CLA isomers tested inhibited production of the platelet lipoxygenase metabolite [14C]12-HETE. The additional presence of a hydroxyl group gave opposite results: 13-HODE (I50=3 microM) was about 4-fold more potent a cyclooxygenase inhibitor than the 9c,11t-CLA isomer but 9-HODE was 2- to 3-fold less effective an inhibitor (I50=34 microM) of [14C]TXB2 formation than the corresponding 10t,12c-CLA. In both the aggregation and arachidonic acid metabolism experiments, the inhibitory effects of CLA on platelets were reversible and dependent on the time of addition of either the aggregating agent or the [14C]arachidonic acid substrate. These studies suggest that CLA isomers may also possess antithrombotic properties.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Arachidonic Acid; Blood Platelets; Dietary Fats, Unsaturated; Humans; Isomerism; Linoleic Acids; Linoleic Acids, Conjugated; Platelet Aggregation Inhibitors; Thromboxane B2

1999
13-Hydroxyoctadeca-9,11-dienoic acid (13-HODE) inhibits thromboxane A2 synthesis, and stimulates 12-HETE production in human platelets.
    Biochemical and biophysical research communications, 1987, Oct-29, Volume: 148, Issue:2

    The effect of 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE), a major lipoxygenase product of endothelial cell linoleic acid metabolism on thrombin-induced platelet thromboxane B2 (TxB2), and 12-hydroxyeico-satetraenoic acid (12-HETE) production was evaluated. 13-HODE inhibited thrombin-induced TxB2 production in human platelets in a concentration-dependent manner. At concentrations of 10 and 30 microM, 13-HODE inhibited TxB2 production by 28 +/- 8% (1SE, n = 5; P less than 0.05) and 48 +/- 6% (P less than 0.01) respectively. 13-HODE (30 microM) also inhibited the production of platelet hydroxyheptadecatrienoic acid (38 +/- 5%, P less than 0.01). A concomitant stimulation of 12-HETE production by 13-HODE was observed (25 +/- 5% and 49 +/- 22% over control values at 10 and 30 microM respectively, P less than 0.01). Our results demonstrate a differential effect of 13-HODE on thrombin stimulated platelet cyclooxygenase and lipoxygenase metabolites.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Adult; Antithrombins; Arachidonic Acid; Arachidonic Acids; Blood Platelets; Humans; Hydroxyeicosatetraenoic Acids; Kinetics; Linoleic Acids; Phospholipids; Platelet Aggregation; Thromboxane B2

1987