thromboxane-a2 has been researched along with defibrotide* in 4 studies
4 other study(ies) available for thromboxane-a2 and defibrotide
Article | Year |
---|---|
Defibrotide activity in experimental frostbite injury.
The pathogenesis of frostbite injury has not been completely elucidated although the available evidence suggests it is an inflammatory reaction following reperfusion injury. Defibrotide given i.p. at 40 mg/kg/ day for three days to rabbits, the ears of which were subjected to frostbite, decreased the presence of inflammatory cells (mast cells -76%; neutrophils -40.4%) and increased prostaglandin I2 (PGI2) (as 6-Keto-PGF1 alpha) in the involved skin. Thromboxane A2 (TxA2) (as TxB2) was unaffected. These data strengthen the view that an inflammatory process is the underlying cause of frostbite injury and that Defibrotide is active in pathological situations involving an inflammatory process like in frostbite. Topics: 6-Ketoprostaglandin F1 alpha; Animals; Female; Fibrinolytic Agents; Frostbite; Leukocyte Count; Male; Mast Cells; Neutrophils; Platelet Aggregation Inhibitors; Polydeoxyribonucleotides; Rabbits; Skin; Thromboxane A2 | 1998 |
Stimulation of endogenous prostacyclin protects the reperfused pig myocardium from ischemic injury.
Several attempts have been undertaken to reduce the severity of ischemic myocardial injury by exogenous administration of eicosanoids and by modification of endogenous eicosanoid production. The present study investigates whether defibrotide, a compound that stimulates endogenous prostacyclin (PGI2), has a beneficial effect in experimental ischemic myocardial injury. Anesthetized, open-chest minipigs were subjected to 1 h of coronary artery occlusion, followed by 3 h of reperfusion. Defibrotide (32 mg/kg x h) or its vehicle were infused i.v. throughout the experiment. Defibrotide increased cardiac PGI2 formation 3- to 4-fold greater than control (P < .05). Thromboxane levels remained unchanged. Irreversible ischemic injury, as identified by negative tetrazolium staining, amounted to 44 +/- 6% of the area at risk in pigs receiving vehicle but was reduced to 23 +/- 4% by defibrotide (P < .05). This reduced tissue injury in defibrotide-treated pigs was associated with improved functional recovery (left ventricular pressure, + dP/dtmax), during early reperfusion. Recovery did not occur in vehicle-treated pigs. Collagen (2 micrograms/ml)-induced platelet aggregation ex vivo was increased in vehicle-treated pigs during ischemia and reperfusion, but not in animals treated with defibrotide. Polymorphonuclear neutrophil leukocyte accumulation in the ischemic border zone was reduced from 59 +/- 17 cells/mm2 in vehicle-treated pigs to 17 +/- 9 cells/mm2 by defibrotide (P < .05). Pretreatment of the animals with indomethacin (3 mg/kg) prevented the reduction of infarct size and polymorphonuclear neutrophil leukocyte infiltration by defibrotide. Indomethacin increased infarct size in vehicle- and defibrotide-treated pigs by 71 and 59%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 6-Ketoprostaglandin F1 alpha; Animals; Blood Platelets; Cyclooxygenase Inhibitors; Disease Models, Animal; Epoprostenol; Female; Granulocytes; Indomethacin; Leukocyte Count; Male; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Neutrophils; Platelet Count; Polydeoxyribonucleotides; Prostaglandins; Stimulation, Chemical; Swine; Swine, Miniature; Thromboxane A2; Ventricular Function, Left | 1993 |
Favourable effect of defibrotide in lipid A-induced shock in pigs.
Defibrotide (DEF), a compound previously found to stimulate vascular prostacyclin (PGI2) formation, has been investigated in an experimental model of septic shock. Anesthetized pigs were subjected to i.v. infusion of lipid A (1.5 mg/kg per hr for 4 hr). DEF (50 mg/kg per hr) or vehicle were infused i.v. throughout the experiments, starting 1 hr prior to lipid A. Two out of 7 pigs receiving vehicle survived lipid A infusion for 4 hr, whereas 6 out of 7 DEF treated animals survived this period (P less than 0.05). DEF delayed the shock-induced depression of platelet count and preserved platelet secretory function (collagen-induced ATP-secretion). DEF increased plasma PGI2 by 45% (P less than 0.05) during lipid A infusion and tended to reduce thromboxane levels. DEF did not change eicosanoid formation in sham-shock pigs (n = 4 per group). In vivo treatment with DEF significantly increased the stimulatory effect of bradykinin (1 microM) and arachidonic acid (100 microM) on PGI2 formation ex vivo of mesenteric and iliac artery segments. The improvement of survival in lipid A-induced shock by DEF may be related to an enhancement of vascular PGI2 generation, potentially due to a reduction of shock-induced platelet activation and microcirculatory dysfunction. Topics: Animals; Arachidonic Acid; Blood Platelets; Bradykinin; Disease Models, Animal; Drug Synergism; Epoprostenol; Lipid A; Platelet Count; Polydeoxyribonucleotides; Shock; Survival Rate; Swine; Thromboxane A2 | 1992 |
[Chronic arterial occlusive diseases--drug therapy and thromboxane A2 synthetase inhibitor].
Topics: Arterial Occlusive Diseases; Aspirin; Chronic Disease; Epoprostenol; Fatty Acids, Monounsaturated; Humans; Methacrylates; Polydeoxyribonucleotides; Pyridines; Thromboxane A2; Thromboxane-A Synthase | 1991 |