thromboplastin and nitroaspirin

thromboplastin has been researched along with nitroaspirin* in 3 studies

Reviews

1 review(s) available for thromboplastin and nitroaspirin

ArticleYear
Tissue factor and nitric oxide: a controversial relationship!
    Journal of thrombosis and thrombolysis, 2007, Volume: 23, Issue:2

    Tissue factor (TF) is the primary physiological initiator of blood coagulation. TF has a high-affinity for factor (F) VII resulting in the formation of (TF:FVII:FVIIa) bimolecular complex which, in the presence of Ca(2+), increases the enzymatic activity of FVIIa towards its natural substrates, FIX and FX, generating their active forms FIXa and FXa, respectively. This eventually leads to thrombin generation and a fibrin clot formation. Up-regulation of TF in injured blood vessels and atherosclerotic plaque can lead to undesirable vascular thrombosis. Nitric oxide (NO) is a free radical synthesized from L-arginine and molecular oxygen by nitric oxide synthases (NOS). NO participates in diverse physiological and pathophysiological process as an intra or extracellular messenger. A relationship between TF and NO has been proposed. Thus, models of TF regulation by NO has been studied in different cells and experimental animal models, but the results have been conflicting. The premise that NO donors can prevent TF expression in vivo has provided the foundation for a broad field of pharmacotherapeutics in vascular medicine. A new class of drugs combining a statin (inhibitors of coenzyme A reductase) with an NO-donating moiety has been described. The resulting drug, nitrostatin, has been suggested to increase the antithrombotic effects of native statin. However, it is questionable if NO release from these drugs had any significant role on TF inhibition. In summary, care must be taken in drawing conclusions about the relationship between NO and TF. Interpretation of NO studies must take several factors into consideration, including NO bioavailability, its half-life and inactivation, as well as the cell type and experimental model used.

    Topics: Animals; Anticoagulants; Aspirin; Blood Coagulation; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Nitrates; Nitric Oxide; Pravastatin; Thromboplastin; Up-Regulation

2007

Other Studies

2 other study(ies) available for thromboplastin and nitroaspirin

ArticleYear
NCX-4016 (NO-aspirin) inhibits lipopolysaccharide-induced tissue factor expression in vivo: role of nitric oxide.
    Circulation, 2002, 12-10, Volume: 106, Issue:24

    NCX-4016 is an acetylsalicylic acid (ASA) derivative containing a nitric oxide-releasing moiety. Compared with ASA, NCX-4016 has a broader spectrum of antithrombotic and antiinflammatory activities. We hypothesized that NCX-4016 might inhibit in vivo lipopolysaccharide (LPS)-induced expression of tissue factor (TF).. Rats were administered 90 mg/kg NCX-4016 orally for 5 days. Placebo, 50 mg/kg ASA, and 80 mg/kg isosorbide-5-mononitrate (ISMN) were used in control groups. On day 5, rats were injected intraperitoneally with 100 microg/kg LPS and killed 6 hours later. The expression of TF in monocytes was measured by flow cytometry and Western blot analysis. Reverse transcriptase-polymerase chain reaction was performed to assess expression of TF and cyclooxygenase-2 (COX-2) genes. Plasma concentrations of interleukin-1beta and tumor necrosis factor-alpha were measured. Urine samples were collected to evaluate the excretion of the thromboxane metabolite 11-dehydro-thromboxane (TX)B2. Gastric mucosa was inspected. LPS injection was followed by synthesis TF and COX-2 mRNAs in circulating monocytes, which were blunted by NCX-4016 but not by ASA or ISMN. Both NCX-4016 and ISMN reduced TF expression on surface of circulating monocyte. LPS increased the excretion 11-dehydro-TXB2, and this was prevented by NCX-4016 and ASA. Unlike ASA, NCX-4016 reduced plasma interleukin-1beta and tumor necrosis factor-alpha. In addition, NCX-4016 almost completely prevented mucosal damage, whereas ASA increased the extension of gastric lesions in LPS-injected rats.. NCX-4016 prevents monocyte TF expression; this is accompanied by inhibition of TX and cytokine biosynthesis. These additive effects of nitric oxide release and COX inhibition may help explain efficacy and tolerability of NCX-4016.

    Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Aspirin; Blotting, Western; Cyclooxygenase 2; Cysteine Proteinase Inhibitors; Drug Administration Schedule; Flow Cytometry; Gastric Mucosa; Interleukin-1; Isoenzymes; Isosorbide Dinitrate; Male; Monocytes; Nitric Oxide; Platelet Aggregation Inhibitors; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Thromboplastin; Thromboxane B2; Tumor Necrosis Factor-alpha

2002
NCX4016 (NO-Aspirin) has multiple inhibitory effects in LPS-stimulated human monocytes.
    British journal of pharmacology, 2001, Volume: 134, Issue:4

    NCX4016 (2 acetoxy-benzoate 2-(2-nitroxymethyl)-phenyl ester, NicOx S.A., France) is an anti-thrombotic agent, chemically related to acetylsalicylic acid (ASA) and able to release NO. We tested the effects of NCX4016 and ASA on the release of the thromboxane (TX) A(2) metabolite TXB(2), tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), expression and activity of tissue factor (TF) in stimulated, adherent human monocytes. Both ASA and NCX4016 1 - 1000 micromol l(-1) dose-dependently reduced TXB(2) concentration, measured by RIA in the supernatant of 10 microg ml(-1) LPS-stimulated cells. NCX4016 activity was comparable to that of equimolar ASA when incubation lasted 6 h (NCX4016 30 micromol l(-1): -86.0+/-10.1%, NCX4016 300 micromol l(-1): -92.2+/-9.0%, ASA 30 micromol l(-1): -92.3+/-7.5%, ASA 300 micromol l(-1): -97.3+/-1.0%, n=6, M+/-s.d.). Most of the activity of NCX4016 up to 100 micromol l(-1) was prevented by 10 micromol l(-1) ODQ, inhibitor of cyclic GMP. NCX4016 100 - 300 micromol l(-1) reduced TNF-alpha (NCX4016 300 micromol l(-1)=-77.2+/-19.9%, n=6) and IL-6 (NCX4016 300 micromol l(-1): -61.9+/-15.2%, n=6) in LPS stimulated monocytes while ASA had no significant effects. TF activity (NCX4016 300 micromol l(-1): 53.7+/-39.9%, n=4) and immunoreactive TF (NCX4016 300 micromol l(-1): -93.9+/-7.9%, n=7), measured in the supernatant of stimulated cells, were also dose-dependently inhibited by NCX4016 but not by ASA. The present results indicate that NCX4016 inhibits TXA(2) generation as well as cytokine release and TF in human monocytes partly via NO-dependent mechanisms. NCX4016 may have a favourable profile of activities in the clinical setting of athero-thrombosis.

    Topics: Aspirin; Cyclic GMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Fibrinolytic Agents; Guanylate Cyclase; Humans; Interleukin-6; Lipopolysaccharides; Monocytes; Nitric Oxide; Oxadiazoles; Quinoxalines; Thromboplastin; Thromboxane B2; Tumor Necrosis Factor-alpha

2001