thiouridine has been researched along with 5-(carboxymethylaminomethyl)-2-thiouridine* in 5 studies
5 other study(ies) available for thiouridine and 5-(carboxymethylaminomethyl)-2-thiouridine
Article | Year |
---|---|
Assay of both activities of the bifunctional tRNA-modifying enzyme MnmC reveals a kinetic basis for selective full modification of cmnm5s2U to mnm5s2U.
Transfer RNA (tRNA) contains a number of complex 'hypermodified' nucleosides that are essential for a number of genetic processes. Intermediate forms of these nucleosides are rarely found in tRNA despite the fact that modification is not generally a complete process. We propose that the modification machinery is tuned into an efficient 'assembly line' that performs the modification steps at similar, or sequentially increasing, rates to avoid build-up of possibly deleterious intermediates. To investigate this concept, we measured steady-state kinetics for the final two steps of the biosynthesis of the mnm(5)s(2)U nucleoside in Escherichia coli tRNA(Glu), which are both catalysed by the bifunctional MnmC enzyme. High-performance liquid chromatography-based assays using selectively under-modified tRNA substrates gave a K(m) value of 600 nM and k(cat) 0.34 s(-1) for the first step, and K(m) 70 nM and k(cat) 0.31 s(-1) for the second step. These values show that the second reaction occurs faster than the first reaction, or at a similar rate at very high substrate concentrations. This result indicates that the enzyme is kinetically tuned to produce fully modified mnm(5)(s(2))U while avoiding build-up of the nm(5)(s(2))U intermediate. The assay method developed here represents a general approach for the comparative analysis of tRNA-modifying enzymes. Topics: Chromatography, High Pressure Liquid; Escherichia coli Proteins; Kinetics; Multienzyme Complexes; RNA, Transfer, Glu; Thiouridine | 2011 |
Structural effects of hypermodified nucleosides in the Escherichia coli and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A.
Previous nuclear magnetic resonance (NMR) studies of unmodified and pseudouridine39-modified tRNA(Lys) anticodon stem loops (ASLs) show that significant structural rearrangements must occur to attain a canonical anticodon loop conformation. The Escherichia coli tRNA(Lys) modifications mnm(5)s(2)U34 and t(6)A37 have indeed been shown to remodel the anticodon loop, although significant dynamic flexibility remains within the weakly stacked U35 and U36 anticodon residues. The present study examines the individual effects of mnm(5)s(2)U34, s(2)U34, t(6)A37, and Mg(2+) on tRNA(Lys) ASLs to decipher how the E. coli modifications accomplish the noncanonical to canonical structural transition. We also investigated the effects of the corresponding human tRNA(Lys,3) versions of the E. coli modifications, using NMR to analyze tRNA ASLs containing the nucleosides mcm(5)U34, mcm(5)s(2)U34, and ms(2)t(6)A37. The human wobble modification has a less dramatic loop remodeling effect, presumably because of the absence of a positive charge on the mcm(5) side chain. Nonspecific magnesium effects appear to play an important role in promoting anticodon stacking. Paradoxically, both t(6)A37 and ms(2)t(6)A37 actually decrease anticodon stacking compared to A37 by promoting U36 bulging. Rather than stack with U36, the t(6)A37 nucleotide in the free tRNAs is prepositioned to form a cross-strand stack with the first codon nucleotide as seen in the recent crystal structures of tRNA(Lys) ASLs bound to the 30S ribosomal subunit. Wobble modifications, t(6)A37, and magnesium each make unique contributions toward promoting canonical tRNA structure in the fundamentally dynamic tRNA(Lys)(UUU) anticodon. Topics: Adenosine; Anticodon; Base Pairing; Binding Sites; Codon; Escherichia coli; Genetic Engineering; Humans; Magnesium; Models, Molecular; Nuclear Magnetic Resonance, Biomolecular; Nucleic Acid Conformation; Pseudouridine; Ribosomes; RNA, Transfer, Lys; Thermodynamics; Thionucleosides; Thiouridine | 2005 |
Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs.
The IscS protein is a pyridoxal phosphate-containing cysteine desulfurase involved in iron-sulfur cluster biogenesis. In prokaryotes, IscS is also involved in various metabolic functions, including thio-modification of tRNA. By contrast, the eukaryotic ortholog of IscS (Nfs1) has thus far been shown to be functional only in mitochondrial iron-sulfur cluster biogenesis. We demonstrate here that yeast Nfs1p is also required for the post-transcriptional thio-modification of both mitochondrial (mt) and cytoplasmic (cy) tRNAs in vivo. Depletion of Nfs1p resulted in an immediate impairment of the 2-thio-modification of 5-carboxymethylaminomethyl-2-thiouridine at the wobble positions of mt-tRNA(UUU)(Lys) and mt-tRNA(UUG)(Gln). In addition, we observed a severe reduction in the 2-thio-modification of 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) of cy-tRNA(UUU)(Lys2) and cy-tRNA(UUC)(Glu3), although the effect was somewhat delayed compared with that seen in mt-tRNAs. Mass spectrometry analysis revealed an increase in 5-methoxycarbonylmethyluridine concomitant with a decrease in mcm(5)s(2)U in cy-tRNAs that were prepared from Nfs1p-depleted cells. These results suggest that Nfs1p is involved in the 2-thio-modification of both 5-carboxymethylaminomethyl-2-thiouridine in mt-tRNAs and mcm(5)s(2)U in cy-tRNAs. Topics: Blotting, Northern; Cytoplasm; Iron-Sulfur Proteins; Mass Spectrometry; Mitochondria; Mitochondrial Proteins; Models, Chemical; Phenylmercury Compounds; RNA Processing, Post-Transcriptional; RNA, Transfer; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sulfurtransferases; Thiouridine; Time Factors; Uridine | 2004 |
Thiolation and 2-methylthio- modification of Bacillus subtilis transfer ribonucleic acids.
Six thionucleosides found in Bacillus subtilis transfer ribonucleic acids were investigated: N6-(delta 2-isopentenyl)-2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, 4-thiouridine, 2-methylthioadenosine, N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine, and one unknown (X1). The presence of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine was demonstrated based on the affinity of the transfer ribonucleic acid containing it for an immunoadsorbent made with the antibody directed toward N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine. The existance of N-[(9-beta-D-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine in two species of lysine transfer ribonucleic acids was also confirmed by high-resolution mass spectrometry. Four of these thionucleosides--N6-(delta 2-isopenenyl)-2-methylthioadenosine, 2-methylthioadenosine, 5-carboxymethylaminomethyl-2-thiouridine, and the unknown designated X1--occurred only in specific areas in the elution profile of an RPC-5 column and probably affect the chromatographic properties of the transfer ribonucleic acids containing them. In contrast with Escherichia coli, where 4-thiouridine is the most frequent type of sulfur-containing modification, approximately one-third of the sulfur groups in B. subtilis transfer ribonucleic acid are present as thiomethyl groups on the 2 position of an adenosine or modified adenosine residue. Topics: Adenosine; Bacillus subtilis; Isopentenyladenosine; Purine Nucleosides; RNA, Bacterial; RNA, Transfer; Sulfides; Thionucleosides; Thiouridine; Threonine | 1981 |
5-(carboxymethylaminomethyl)-2-thiouridine, a new modified nucleoside found at the first letter position of the anticodon.
The structure of a modified uridine derivative which was detected at the first letter position of the anticodon of Bacillus subtilis tRNA1Lys was determined to be 5-(carboxymethylaminomethyl)-2-thiouridine. The determination was mainly based in this ultraviolet absorption spectra and mass spectrometric analysis of the trimethylsilyl derivative. Topics: Anticodon; Chromatography, Thin Layer; Escherichia coli; Mass Spectrometry; RNA, Transfer; Spectrophotometry, Ultraviolet; Thiouridine | 1981 |