thiourea has been researched along with resiniferatoxin* in 5 studies
5 other study(ies) available for thiourea and resiniferatoxin
Article | Year |
---|---|
α-Methylated simplified resiniferatoxin (sRTX) thiourea analogues as potent and stereospecific TRPV1 antagonists.
A series of α-methylated analogues of the potent sRTX thiourea antagonists were investigated as rTRPV1 ligands in order to examine the effect of α-methylation on receptor activity. The SAR analysis indicated that activity was stereospecific with the (R)-configuration of the newly formed chiral center providing high binding affinity and potent antagonism while the configuration of the C-region was not significant. Topics: Animals; CHO Cells; Cricetinae; Cricetulus; Diterpenes; Humans; Methylation; Molecular Structure; Protein Binding; Rats; Stereoisomerism; Structure-Activity Relationship; Thiourea; TRPV Cation Channels | 2014 |
TRPV1-mediated calcium signal couples with cannabinoid receptors and sodium-calcium exchangers in rat odontoblasts.
Odontoblasts are involved in the transduction of stimuli applied to exposed dentin. Although expression of thermo/mechano/osmo-sensitive transient receptor potential (TRP) channels has been demonstrated, the properties of TRP vanilloid 1 (TRPV1)-mediated signaling remain to be clarified. We investigated physiological and pharmacological properties of TRPV1 and its functional coupling with cannabinoid (CB) receptors and Na(+)-Ca(2+) exchangers (NCXs) in odontoblasts. Anandamide (AEA), capsaicin (CAP), resiniferatoxin (RF) or low-pH evoked Ca(2+) influx. This influx was inhibited by capsazepine (CPZ). Delay in time-to-activation of TRPV1 channels was observed between application of AEA or CAP and increase in [Ca(2+)](i). In the absence of extracellular Ca(2+), however, an immediate increase in [Ca(2+)](i) was observed on administration of extracellular Ca(2+), followed by activation of TRPV1 channels. Intracellular application of CAP elicited inward current via opening of TRPV1 channels faster than extracellular application. With extracellular RF application, no time delay was observed in either increase in [Ca(2+)](i) or inward current, indicating that agonist binding sites are located on both extra- and intracellular domains. KB-R7943, an NCX inhibitor, yielded an increase in the decay time constant during TRPV1-mediated Ca(2+) entry. Increase in [Ca(2+)](i) by CB receptor agonist, 2-arachidonylglycerol, was inhibited by CB1 receptor antagonist or CPZ, as well as by adenylyl cyclase inhibitor. These results showed that TRPV1-mediated Ca(2+) entry functionally couples with CB1 receptor activation via cAMP signaling. Increased [Ca(2+)](i) by TRPV1 activation was extruded by NCXs. Taken together, this suggests that cAMP-mediated CB1-TRPV1 crosstalk and TRPV1-NCX coupling play an important role in driving cellular functions following transduction of external stimuli to odontoblasts. Topics: Animals; Arachidonic Acids; Calcium; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Signaling; Cannabinoid Receptor Antagonists; Capsaicin; Cyclic AMP; Diterpenes; Endocannabinoids; Glycerides; Hydrogen-Ion Concentration; Odontoblasts; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Cannabinoid; Sodium-Calcium Exchanger; Thiourea; TRPV Cation Channels | 2012 |
Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells.
Transient receptor potential vanilloid 1 (TRPV1) is a calcium-selective ion channel expressed in human lung cells. We show that activation of the intracellular subpopulation of TRPV1 causes endoplasmic reticulum (ER) stress and cell death in human bronchial epithelial and alveolar cells. TRPV1 agonist (nonivamide) treatment caused calcium release from the ER and altered the transcription of growth arrest- and DNA damage-inducible transcript 3 (GADD153), GADD45alpha, GRP78/BiP, ATF3, CCND1, and CCNG2) in a manner comparable with prototypical ER stress-inducing agents. The TRPV1 antagonist N-(4-tert-butylbenzyl)-N'-(1-[3-fluoro-4-(methylsulfonylamino)-phenyl]ethyl)thiourea (LJO-328) inhibited mRNA responses and cytotoxicity. EGTA and ruthenium red inhibited cell surface TRPV1 activity, but they did not prevent ER stress gene responses or cytotoxicity. Cytotoxicity paralleled eukaryotic translation initiation factor 2, subunit 1 (EIF2alpha) phosphorylation and the induction of GADD153 mRNA and protein. Transient overexpression of GADD153 caused cell death independent of agonist treatment, and cells selected for stable overexpression of a GADD153 dominant-negative mutant exhibited reduced sensitivity. Salubrinal, an inhibitor of ER stress-induced cytotoxicity via the EIF2alphaK3/EIF2alpha pathway, or stable overexpression of the EIF2alpha-S52A dominant-negative mutant also inhibited cell death. Treatment of the TRPV1-null human embryonic kidney 293 cell line with TRPV1 agonists did not initiate ER stress responses. Likewise, n-benzylnonanamide, an inactive analog of nonivamide, failed to cause ER calcium release, an increase in GADD153 expression, and cytotoxicity. We conclude that activation of ER-bound TRPV1 and stimulation of GADD153 expression via the EIF2alphaK3/EIF2alpha pathway represents a common mechanism for cytotoxicity by cell-permeable TRPV1 agonists. These findings are significant within the context of lung inflammatory diseases where elevated concentrations of endogenous TRPV1 agonists are probably produced in sufficient quantities to cause TRPV1 activation and lung cell death. Topics: Activating Transcription Factor 3; Arachidonic Acids; Calcium; Capsaicin; Cell Line; Cell Line, Tumor; Cell Survival; Cells, Cultured; Cinnamates; Cyclin D1; Cyclin G2; Cyclins; Diterpenes; Dithiothreitol; Endocannabinoids; Endoplasmic Reticulum; Endoplasmic Reticulum Chaperone BiP; Enzyme Inhibitors; Epithelial Cells; Eukaryotic Initiation Factor-2; Gene Expression; Humans; Lung; Phosphorylation; Polyunsaturated Alkamides; Thapsigargin; Thiourea; Transcription Factor CHOP; Transfection; TRPV Cation Channels | 2007 |
Structure-activity relationships of simplified resiniferatoxin analogues with potent VR1 agonism elucidates an active conformation of RTX for VR1 binding.
We previously described a series of N-(3-acyloxy-2-benzylpropyl) homovanillate and N'-(4-hydroxy-3-methoxybenzyl) thiourea derivatives that were potent VR1 agonists with high-affinities and excellent analgesic profiles. The design of these simplified RTX analogues was based on our RTX-derived pharmacophore model which incorporates the 4-hydroxy-3-methoxyphenyl (A-region), C(20)-ester (B-region), orthophenyl (C1-region) and C(3)-keto (C2-region) groups of RTX. For the purpose of optimizing the spatial arrangement of the four principal pharmacophores on the lead agonists (1-4), we have modified the distances in the parent C-region, 3-acyloxy-2-benzylpropyl groups, by lengthening or shortening one carbon to vary the distances between the pharmacophores. We find that two of the amides, 4 and 19, possess EC(50) values <1 nM for induction of calcium influx in the VR1-CHO cells. As observed previously, the structure-activity relations for inhibition of RTX binding to VR1 and for induction of calcium uptake were distinct, presumably reflecting both intrinsic and methodological factors. In order to find the active conformation of VR1 ligands, the energy-minimized conformations of seven selected agonists were determined and the positions of their four pharmacophores were matched with those of five low energy RTX conformations. The rms values for the overlaps in the pharmacophores were calculated and correlated with the measured binding affinities (K(i)) and calcium influx (EC(50)) values. The binding affinities of the agonists correlated best with the RMS values derived from RTX conformation E (r(2)=0.92), predicting a model of the active conformation of RTX and related vanilloids for binding to VR1. Poorer correlation was obtained between any of the conformations and the EC(50) values for calcium influx. Topics: Amides; Animals; Calcium; CHO Cells; Cricetinae; Diterpenes; Ligands; Models, Molecular; Protein Binding; Protein Conformation; Rats; Receptors, Drug; Structure-Activity Relationship; Thiourea | 2004 |
High affinity antagonists of the vanilloid receptor.
The vanilloid receptor VR1 has attracted great interest as a sensory transducer for capsaicin, protons, and heat, and as a therapeutic target. Here we characterize two novel VR1 antagonists, KJM429 [N-(4-tert-butylbenzyl)-N'-[4-(methylsulfonylamino)benzyl]thiourea] and JYL1421 [N-(4-tert-butylbenzyl)-N'-[3-fluoro-4-(methylsulfonylamino)benzyl]thiourea], with enhanced activity compared with capsazepine on rat VR1 expressed in Chinese hamster ovary (CHO) cells. JYL1421, the more potent of the two novel antagonists, inhibited [(3)H]resiniferatoxin binding to rVR1 with an affinity of 53.5 +/- 6.5 nM and antagonized capsaicin-induced calcium uptake with an EC(50) of 9.2 +/- 1.6 nM, reflecting 25- and 60-fold greater potencies than capsazepine. Both JYL1421 and KJM429 antagonized RTX as well as capsaicin and their mechanism was competitive. The responses to JYL1421 and KJM429 differed for calcium uptake by rVR1 induced by heat or pH. JYL1421 antagonized the response to both pH 6.0 and 5.5, whereas KJM429 antagonized at pH 6.0 but was an agonist at lower pH (<5.5). For heat, JYL1421 fully antagonized and KJM429 partially antagonized. Capsazepine showed only weak antagonism for both pH and heat. Responses of rVR1 to different activators could thus be differentially affected by different ligands. In cultured dorsal root ganglion neurons, JYL1421 and KJM429 likewise behaved as antagonists for capsaicin, confirming that the antagonism is not limited to heterologous expression systems. Finally, JYL1421 and KJM429 had little or no effect on ATP-induced calcium uptake in CHO cells lacking rVR1, unlike capsazepine. We conclude that JYL1421 is a competitive antagonist of rVR1, blocking response to all three of the agonists (capsaicin, heat, and protons) with enhanced potency relative to capsazepine. Topics: Animals; Binding, Competitive; Biological Transport; Calcium; Capsaicin; Cells, Cultured; CHO Cells; Cricetinae; Diterpenes; Hot Temperature; Neurons; Protons; Rats; Receptors, Drug; Sulfonamides; Thiourea | 2002 |