thiourea and purine
thiourea has been researched along with purine* in 2 studies
Other Studies
2 other study(ies) available for thiourea and purine
Article | Year |
---|---|
Reduction of the "burst release" of copper ions from copper-based intrauterine devices by organic inhibitors.
The copper intrauterine device is a contraceptive method that is based on the release of copper ions from a copper wire. Immediately after insertion, the dissolution of copper in the uterine fluid is markedly higher ("burst release") than that necessary for contraception action, leading to a variety of harmful effects.. Pretreatments with organic compounds [thiourea (TU) and purine (PU), 10(-4)-10(-2) M concentration range, 1- and 3-h immersion times] were tested. The dissolution of copper with and without pretreatments in TU and PU solutions was analyzed by conventional electrochemical techniques and surface analysis.. Pretreatments in PU solutions reduced the initial corrosion rate of copper in simulated uterine solutions, with inhibitory efficiencies that depend on the PU concentration and on the immersion time assayed. Inhibitory efficiency values higher than 98% for pretreatments with ≥10(-3) M PU were found. Conversely, after TU pretreatments, a high copper release was measured.. It was concluded that 10(-3) M PU pretreatment is a promising strategy able to reduce the "burst release" of copper and to ensure contraceptive action. Topics: Copper; Corrosion; Electrochemical Techniques; Intrauterine Devices, Copper; Purines; Thiourea | 2012 |
Enzymatic processing of platinated RNAs.
The broadly prescribed antitumor drug cisplatin coordinates to DNA, altering the activity of cellular proteins whose functions rely upon sensing DNA structure. Cisplatin is also known to coordinate to RNA, but the effects of RNA-Pt adducts on the large number of proteins that process the transcriptome are currently unknown. In an effort to address how platination of an RNA alters the function of RNA processing enzymes, we have determined the influence of [Pt(NH(3))(2)](2+)-RNA adducts on the activities of 3'-->5' and 5'-->3' phosphodiesterases, a purine-specific endoribonuclease, and a reverse transcriptase. Single Pt(II) adducts on RNA oligonucleotides of the form (5'-U(6)-XY-U(5)-3': XY = GG, GA, AG, GU) are found to block exonucleolytic digestion. Similar disruption of endonucleolytic cleavage is observed, except for the platinated XY = GA RNA where RNase U2 uniquely tolerates platinum modification. Platinum adducts formed with a more complex RNA prevent reverse transcription, providing evidence that platination is capable of interfering with RNA's role in relaying sequence information. The observed disruptions in enzymatic activity point to the possibility that cellular RNA processing may be similarly affected, which could contribute to the cell-wide effects of platinum antitumor drugs. Additionally, we show that thiourea reverses cisplatin-RNA adducts, providing a chemical tool for use in future studies regarding cisplatin targeting of cellular RNAs. Topics: Animals; Base Sequence; Cattle; Cisplatin; DNA, Complementary; Enzyme Inhibitors; Enzymes; Platinum; Purines; Reverse Transcription; RNA; Substrate Specificity; Thiourea | 2010 |