thiourea has been researched along with neocuproine* in 4 studies
4 other study(ies) available for thiourea and neocuproine
Article | Year |
---|---|
Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants.
Plant-derived dietary antioxidants have attracted considerable interest in recent past for their chemopreventive and cancer therapeutic abilities in animal models. Thymoquinone (TQ) is the major bioactive constituent of volatile oil of Nigella sativa and has been shown to exert various pharmacological properties, such as anti-inflammatory, cardiovascular, analgesic, anti-neoplastic, anticancer and chemopreventive. Although several mechanisms have been suggested for the chemopreventive and anticancer activity of TQ, a clear mechanism of action of TQ has not been elucidated. TQ is a known antioxidant at lower concentrations and most of the studies elucidating the mechanism have centered on the antioxidant property. However, recent publications have shown that TQ may act as a prooxidant at higher concentrations. It is well known that plant-derived antioxidants can switch to prooxidants even at low concentrations in the presence of transition metal ions such as copper. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Copper is an important metal ion present in the chromatin and is closely associated with DNA bases, particularly guanine. Using human peripheral lymphocytes and comet assay, we first show that TQ is able to cause oxidative cellular DNA breakage. Such a DNA breakage can be inhibited by copper-chelating agents, neocuproine and bathocuproine, and scavengers of reactive oxygen species. Further, it is seen that TQ targets cellular copper in prostate cancer cell lines leading to a prooxidant cell death. We believe that such a prooxidant cytotoxic mechanism better explains the anticancer activity of plant-derived antioxidants. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Benzoquinones; Cell Line, Tumor; Cell Nucleus; Cell Proliferation; Chelating Agents; Copper; DNA; DNA Breaks, Double-Stranded; Drug Screening Assays, Antitumor; Free Radical Scavengers; Humans; Lymphocytes; Oxidation-Reduction; Phenanthrolines; Plasmids; Reactive Oxygen Species; Thiobarbituric Acid Reactive Substances; Thiourea | 2013 |
The prooxidant action of dietary antioxidants leading to cellular DNA breakage and anticancer effects: implications for chemotherapeutic action against cancer.
Plant-derived dietary antioxidants have attracted considerable interest in recent past for their ability to induce apoptosis and regression of tumors in animal models. While it is believed that the antioxidant properties of these agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, it could not account for apoptosis induction and chemotherapeutic observations. In this article, we show that dietary antioxidants can alternatively switch to a prooxidant action in the presence of transition metals such as copper. Such a prooxidant action leads to strand breaks in cellular DNA and growth inhibition in cancer cells. Further, the cellular DNA breakage and anticancer effects were found to be significantly enhanced in the presence of copper ions. Moreover, inhibition of antioxidant-induced DNA strand breaks and oxidative stress by Cu(I)-specific chelators bathocuproine and neocuproine demonstrated the role of endogenous copper in the induction of the prooxidant mechanism. Since it is well established that tissue, cellular, and serum copper levels are considerably elevated in various malignancies, such a prooxidant cytotoxic mechanism better explains the anticancer activity of dietary antioxidants against cancer cells. Topics: Antineoplastic Agents; Antioxidants; Cell Death; Cell Nucleus; Cell Proliferation; Copper; Diet; DNA Breaks; Drug Interactions; Electron Transport; Humans; Isoflavones; Lymphocytes; MCF-7 Cells; Oxidative Stress; Phenanthrolines; Reactive Oxygen Species; Thiobarbituric Acid Reactive Substances; Thiourea | 2013 |
DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells.
Reactive oxygen species have been shown to be involved in the mutagenicity, clastogenicity, and apoptosis of mammalian cells treated with arsenic or cadmium. As these endpoints require several hours of cellular processing, it is not clear that reactive oxygen species damage DNA directly or interfere with DNA replication and repair. Using single-cell alkaline electrophoresis, we have detected DNA strand breaks (DSBs) in bovine aortic endothelial cells by a 4-h treatment with sodium arsenite (As) and cadmium chloride (Cd) in sublethal concentrations. As-induced DSBs could be decreased by nitric oxide (NO) synthase inhibitors, superoxide scavengers, and peroxynitrite scavengers and could be increased by superoxide generators and NO generators. Treatment with As also increased nitrite production. These results suggest that As-increased NO may react with O2*- to produce peroxynitrite and cause DNA damage. The results showing that Cd increased cellular H2O2 levels and that Cd-induced DSBs could be modulated by various oxidant modulators suggest that Cd may induce DSBs via O2*-, H2O2, and *OH. Nevertheless, the DSBs in both As- and Cd-treated cells seem to come from the excision of oxidized bases such as formamidopyrimidine and 8-oxoguanine, as the Escherichia coli enzyme formamidopyrimidine-DNA glycosylase (Fpg) increased DSBs in cells treated with As, 3-morpholinosydnonimine (a peroxynitrite-generating agent), Cd, or H2O2. Topics: Amitrole; Animals; Antioxidants; Aorta; Arsenites; Bacterial Proteins; Cadmium Chloride; Catalase; Cattle; Cells, Cultured; Chromans; Citrulline; Ditiocarb; DNA Damage; DNA-Formamidopyrimidine Glycosylase; Endothelium, Vascular; Enzyme Inhibitors; Escherichia coli Proteins; Free Radical Scavengers; Hydrogen Peroxide; Molsidomine; Mutagens; N-Glycosyl Hydrolases; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroarginine; Onium Compounds; Phenanthrolines; Reactive Oxygen Species; Sodium Compounds; Sodium Selenite; Superoxide Dismutase; Superoxides; Thiomalates; Thiourea; Uric Acid | 2000 |
Effects of 1,10-phenanthroline and hydrogen peroxide in Escherichia coli: lethal interaction.
It has been observed that when Escherichia coli cells are treated simultaneously with phenanthroline and H2O2, there is a lethal interaction. In order to analyze the mechanism of this lethal interaction, wild-type and xthA mutant cells of E. coli were treated with 2.5 mM H2O2 and 1 mM phenanthroline. This treatment was preceded by treatments with different metal chelators (dipyridyl for Fe2+, desferal for Fe3+ and neocuproine for Cu2+) or conducted simultaneously to other treatments with chelators and radical scavengers (thiourea, ethanol and sodium benzoate). The lethal interaction was observed in both the E. coli wild-type strain and xthA mutant strain, which is deficient in the exonuclease III repair enzyme. Nevertheless, the mutant strain was much more sensitive than the wild-type one. Dipyridyl pretreatment protected the cells against the lethal interaction, while desferal pretreament was unable to do so. This suggests that the lethal interaction requires Fe2+ and not Fe3+ ions. Ethanol and sodium benzoate were incapable of protecting bacterial cells against the lethal interaction. Even a 20-min pretreatment with benzoate did not confer protection. On the other hand, thiourea protected the cells completely. Based on our results, we propose that the lethal interaction may be caused not only by the reaction kinetics of phenanthroline and Fe, but also by the ability of phenanthroline to intercalate in DNA. After forming the mono and bis complexes, phenanthroline would serve as a shuttle and take the Fe2+ ions to the DNA. So, the Fenton reaction would take its course with the consequent generation of OH. radicals near DNA. This proximity to the DNA would protect the OH. radicals against the scavengers' action, thus optimizing the Fenton reaction. Topics: 2,2'-Dipyridyl; Benzoates; Benzoic Acid; Chelating Agents; Copper; Deferoxamine; Escherichia coli; Ethanol; Exodeoxyribonucleases; Ferric Compounds; Ferrous Compounds; Free Radical Scavengers; Hydrogen Peroxide; Hydroxyl Radical; Intercalating Agents; Iron; Oxidants; Phenanthrolines; Thiourea | 1997 |