thiourea has been researched along with linsidomine* in 3 studies
3 other study(ies) available for thiourea and linsidomine
Article | Year |
---|---|
Nitric oxide stimulates gamma-aminobutyric acid release and inhibits glycine release in retina.
Nitric oxide (NO) modulates the uptake and/or release of neurotransmitters through a variety of cellular mechanisms. However, the pharmacological and biochemical processes underlying these neurochemical effects of NO often remain unclear. In our study, we used immunocytochemical methods to study the effects of NO, cyclic guanosine monophosphate (cGMP), and peroxynitrite on the uptake and release of gamma-aminobutyric acid (GABA) and glycine in the turtle retina. In addition, we examined the involvement of glutamate receptors, calcium, and the GABA transporter in this GABA uptake and release. We also tested for interactions between the GABAergic and glycinergic systems. In general, we show that NO stimulated GABA release and inhibited glycine release. The NO-stimulated GABA release involved calcium-dependent or calcium-independent synaptic release or reversal of the GABA transporter. Some effects of NO on GABA release involved glutamate, cGMP, or peroxynitrite. NO promoted glycine uptake and inhibited its release, and this inhibition of glycine release was influenced by GABAergic modulation. These findings indicate that NO modulates the levels of the inhibitory transmitters GABA and glycine through several specific biochemical mechanisms in different retinal cell types and layers. Thus it appears that some of the previously described reciprocal interactions between GABA and glycine in the retina function through specific NO signaling pathways. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Bicuculline; Cadmium; Citrulline; Cyclic GMP; DEET; Dizocilpine Maleate; Drug Interactions; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Free Radical Scavengers; GABA Antagonists; gamma-Aminobutyric Acid; Glycine; Immunohistochemistry; In Vitro Techniques; Molsidomine; Neural Inhibition; Nipecotic Acids; Nitric Oxide; Potassium; Retina; Silver Staining; Thiourea; Turtles; Vigabatrin | 2005 |
The role of nitric oxide in locomotor regulation in mice and its interaction with nitrous oxide.
Topics: Animals; Citrulline; Male; Mice; Molsidomine; Motor Activity; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitrous Oxide; Thiourea | 2003 |
DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells.
Reactive oxygen species have been shown to be involved in the mutagenicity, clastogenicity, and apoptosis of mammalian cells treated with arsenic or cadmium. As these endpoints require several hours of cellular processing, it is not clear that reactive oxygen species damage DNA directly or interfere with DNA replication and repair. Using single-cell alkaline electrophoresis, we have detected DNA strand breaks (DSBs) in bovine aortic endothelial cells by a 4-h treatment with sodium arsenite (As) and cadmium chloride (Cd) in sublethal concentrations. As-induced DSBs could be decreased by nitric oxide (NO) synthase inhibitors, superoxide scavengers, and peroxynitrite scavengers and could be increased by superoxide generators and NO generators. Treatment with As also increased nitrite production. These results suggest that As-increased NO may react with O2*- to produce peroxynitrite and cause DNA damage. The results showing that Cd increased cellular H2O2 levels and that Cd-induced DSBs could be modulated by various oxidant modulators suggest that Cd may induce DSBs via O2*-, H2O2, and *OH. Nevertheless, the DSBs in both As- and Cd-treated cells seem to come from the excision of oxidized bases such as formamidopyrimidine and 8-oxoguanine, as the Escherichia coli enzyme formamidopyrimidine-DNA glycosylase (Fpg) increased DSBs in cells treated with As, 3-morpholinosydnonimine (a peroxynitrite-generating agent), Cd, or H2O2. Topics: Amitrole; Animals; Antioxidants; Aorta; Arsenites; Bacterial Proteins; Cadmium Chloride; Catalase; Cattle; Cells, Cultured; Chromans; Citrulline; Ditiocarb; DNA Damage; DNA-Formamidopyrimidine Glycosylase; Endothelium, Vascular; Enzyme Inhibitors; Escherichia coli Proteins; Free Radical Scavengers; Hydrogen Peroxide; Molsidomine; Mutagens; N-Glycosyl Hydrolases; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroarginine; Onium Compounds; Phenanthrolines; Reactive Oxygen Species; Sodium Compounds; Sodium Selenite; Superoxide Dismutase; Superoxides; Thiomalates; Thiourea; Uric Acid | 2000 |