thiourea and ethylene-dimethacrylate

thiourea has been researched along with ethylene-dimethacrylate* in 2 studies

Other Studies

2 other study(ies) available for thiourea and ethylene-dimethacrylate

ArticleYear
Poly(glyceryl monomethacrylate-co-ethylene glycol dimethacrylate) monolithic columns with incorporated bare and surface modified gluconamide fumed silica nanoparticles for hydrophilic interaction capillary electrochromatography.
    Talanta, 2018, Mar-01, Volume: 179

    This research article presents the preparation and characterization of monolithic capillary columns with incorporated bare fumed silica nanoparticles (FSNPs) and surface coated gluconamide FSNPs and their subsequent use in hydrophilic interaction capillary electrochromatography (HI-CEC) of small relatively polar solutes. The monolithic support was based on the in situ polymerization of glyceryl monomethacrylate (GMM) and ethylene glycol dimethacrylate (EDMA) yielding the poly(GMM-co-EDMA) monolith for the incorporation of bare and gluconamide-FNSPs. The poly(GMM-co-EDMA) monolith functioned as a true "support" for both types of polar FSNPs "stationary phases". In other words, monolithic capillary columns with "FSNPs stationary phases" were obtained in the sense that the contribution of the monolith proper to solute' retention was at its minimum. The gluconamide-FSNPs were obtained by reacting the FSNPs with the polar organosilane N-(3-triethoxysilylpropyl)gluconamide either by a pre- or on-column approach yielding p-gluconamide-FSNPs or o-gluconamide-FSNPs, respectively. While the p-gluconamide-FSNPs was coated by an oligosiloxane gluconamide layer as revealed by thermogravimetric analysis, the o-gluconamide-FSNPs are thought to be covered with a monomeric layer of gluconamide ligands as was manifested by the higher plate number obtained on the latter than on the former gluconamide-FSNPs incorporated monolithic columns. In the on-column modification process of FSNPs, the reaction was performed in a closed system whereby atmospheric water vapor are not available to cause the polymerization of the trifunctional organosilane N-(3-triethoxysilylpropyl)gluconamide. Also, the fact that the o-gluconamide-FSNPs incorporated monoliths were made from bare-FSNPs incorporated monoliths may indicate that the bare FSNPs were better dispersed into the monolithic matrix than the p-gluconamide-FSNPs, a condition that might have further contributed to the lower plate count obtained on p-gluconamide- than o-gluconamide-FSNPs incorporated monolithic columns. Overall, o-gluconamide-FSNPs stationary phases and to a lesser extent bare-FSNPs stationary phases proved useful in HI-CEC of small polar solutes, including DMF, formamide, thiourea, some phenols and nucleobases.

    Topics: Capillary Electrochromatography; Dimethylformamide; Formamides; Gluconates; Glycerides; Hydrophobic and Hydrophilic Interactions; Methacrylates; Nanoparticles; Phenols; Polymerization; Purines; Pyrimidines; Silicon Dioxide; Thiourea

2018
A novel ionic liquid monolithic column and its separation properties in capillary electrochromatography.
    Analytica chimica acta, 2012, Jan-27, Volume: 712

    A novel ionic liquid (IL) monolithic capillary column was successfully prepared by thermal free radical copolymerization of IL (1-vinyl-3-octylimidazolium chloride, ViOcIm(+)Cl(-)) together with lauryl methacrylate (LMA) as the binary functional monomers and ethylene dimethacrylate (EDMA) as the cross-linker in binary porogen. The proportion of monomers, porogens and cross-linker in the polymerization mixture was optimized in detail. The resulting IL-monolithic column could not only generate a stable reversed electroosmotic flow (EOF) in a wide pH range (2.0-12.0), but also effectively eliminate the wall adsorption of the basic analytes. The obtained IL-monolithic columns were examined by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). These results indicated that the IL-monolithic capillary column possessed good pore properties, mechanical stability and permeability. The column performance was also evaluated by separating different kinds of compounds, such as alkylbenzenes, thiourea and its analogues, and amino acids. The lowest plate height of ~6.8 μm was obtained, which corresponded to column efficiency (theoretical plates, N) of ~147,000 plates m(-1) for thiourea. ILs, as a new type of functional monomer, present a promising option in the fabrication of the organic polymer-based monolithic columns in CEC.

    Topics: Amino Acids; Benzene Derivatives; Capillary Electrochromatography; Hydrogen-Ion Concentration; Ionic Liquids; Methacrylates; Thiourea

2012