thiourea has been researched along with 6-hydroxy-2-5-7-8-tetramethylchroman-2-carboxylic-acid* in 4 studies
4 other study(ies) available for thiourea and 6-hydroxy-2-5-7-8-tetramethylchroman-2-carboxylic-acid
Article | Year |
---|---|
Acetoacetate as regulator of palmitic acid-induced uncoupling involving liver mitochondrial ADP/ATP antiporter and aspartate/glutamate antiporter.
The effect of acetoacetate on palmitate-induced uncoupling with the involvement of ADP/ATP antiporter and aspartate/glutamate antiporter has been studied in liver mitochondria. The incubation of mitochondria with acetoacetate during succinate oxidation in the presence of rotenone, oligomycin, and EGTA suppresses the accumulation of conjugated dienes. This is considered as a display of antioxidant effect of acetoacetate. Under these conditions, acetoacetate does not influence the respiration of mitochondria in the absence or presence of palmitate but eliminates the ability of carboxyatractylate or aspartate separately to suppress the uncoupling effect of this fatty acid. The action of acetoacetate is eliminated by beta-hydroxybutyrate or thiourea, but not by the antioxidant Trolox. In the absence of acetoacetate, the palmitate-induced uncoupling is limited by a stage sensitive to carboxyatractylate (ADP/ATP antiporter) or aspartate (aspartate/glutamate antiporter); in its presence, it is limited by a stage insensitive to the effect of these agents. In the presence of Trolox, ADP suppresses the uncoupling action of palmitate to the same degree as carboxyatractylate. Under these conditions, acetoacetate eliminates the recoupling effects of ADP and aspartate, including their joint action. This effect of acetoacetate is eliminated by beta-hydroxybutyrate or thiourea. It is supposed that the stimulating effect of acetoacetate is caused both by increase in the rate of transfer of fatty acid anion from the inner monolayer of the membrane to the outer one, which involves the ADP/ATP antiporter and aspartate/glutamate antiporter, and by elimination of the ability of ADP to inhibit this transport. Under conditions of excessive production of reactive oxygen species in mitochondria at a high membrane potential and in the presence of small amounts of fatty acids, such effect of acetoacetate can be considered as one of the mechanisms of antioxidant protection. Topics: Acetoacetates; Adenosine Diphosphate; Adenosine Triphosphate; Animals; Antioxidants; Antiporters; Chromans; Hydroxybutyrates; Male; Mitochondria, Liver; Palmitic Acid; Rats; Thiourea; Uncoupling Agents | 2010 |
H(mox-1) constitutes an adaptive response to effect antioxidant cardioprotection: A study with transgenic mice heterozygous for targeted disruption of the Heme oxygenase-1 gene.
Heme oxygenase-1 (H(mox-1)) has been implicated in protection of cells against ischemia/reperfusion injury.. To examine the physiological role of H(mox-1), a line of heterozygous H(mox-1)-knockout mice was developed by targeted disruption of the mouse H(mox-1) gene. Transgene integration was confirmed and characterized at the protein level. A 40% reduction of H(mox-1) protein occurred in the hearts of H(mox-1)(+/)(-) mice compared with those of wild-type mice. Isolated mouse hearts from H(mox-1)(+/)(-) mice and wild-type controls perfused via the Langendorff mode were subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. The H(mox-1)(+/)(-) hearts displayed reduced ventricular recovery, increased creatine kinase release, and increased infarct size compared with those of wild-type controls, indicating that these H(mox-1)(+/)(-) hearts were more susceptible to ischemia/reperfusion injury than wild-type controls. These results also suggest that H(mox-1)(+/)(-) hearts are subjected to increased amounts of oxidative stress. Treatment with 2 different antioxidants, Trolox or N:-acetylcysteine, only partially rescued the H(mox-1)(+/)(-) hearts from ischemia/reperfusion injury. Preconditioning, which renders the heart tolerant to subsequent lethal ischemia/reperfusion, failed to adapt the hearts of the H(mox-1)(+/)(-) mice compared with wild-type hearts.. These results demonstrate that H(mox-1) plays a crucial role in ischemia/reperfusion injury not only by functioning as an intracellular antioxidant but also by inducing its own expression under stressful conditions such as preconditioning. Topics: Acetylcysteine; Animals; Antioxidants; Chromans; Creatine Kinase; Disease Models, Animal; Gene Targeting; Heart; Heart Rate; Heme Oxygenase (Decyclizing); Heme Oxygenase-1; Heterozygote; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Malondialdehyde; Membrane Proteins; Mice; Mice, Transgenic; Myocardial Contraction; Myocardial Infarction; Myocardial Ischemia; Myocardium; Reperfusion Injury; Thiourea | 2001 |
Neuroprotective and neurorescuing effects of isoform-specific nitric oxide synthase inhibitors, nitric oxide scavenger, and antioxidant against beta-amyloid toxicity.
Beta amyloid (Abeta) is implicated in Alzheimer's disease (AD). Abeta(1 - 42) (5, 10, or 20 microM) was able to increase NO release and decrease cellular viability in primary rat cortical mixed cultures. L-NOARG and SMTC (both at 10 or 100 microM) - type I NOS inhibitors - reduced cellular NO release in the absence of Abeta(1 - 42). At 100 microM, both drugs decreased cell viability. L-NIL (10 or 100 microM), and 1400W (1 or 5 microM) - type II NOS inhibitors - reduced NO release and improved viability when either drug was administered up to 4 h post Abeta(1 - 42) (10 microM) treatment. L-NOARG and SMTC (both at 10 or 100 microM) were only able to decrease NO release. Carboxy-PTIO or Trolox (both at 10 or 100 microM) - a NO scavenger and an antioxidant, respectively - increased viability when administered up to 1 h post Abeta(1 - 42) treatment. Either L-NIL (50 microM) or 1400W (3 microM) and Trolox (50 microM) showed synergistic actions. Peroxynitrite (100 or 200 microM) reduced cell viability. Viabilities were improved by L-NIL (100 microM), 1400W (5 microM), carboxy-PTIO (10 or 100 microM), and Trolox (10 or 100 microM). Hence, the data show that Abeta(1 - 42) induced NO release in neurons and glial cells, and that Abeta neurotoxicity is, at least in part, mediated by NO. NO concentration modulating compounds and antioxidant may have therapeutic importance in neurological disorders where oxidative stress is likely involved such as in AD. Topics: Amyloid beta-Peptides; Animals; Antioxidants; Benzoates; Cell Survival; Cells, Cultured; Cerebral Cortex; Chromans; Citrulline; Dose-Response Relationship, Drug; Enzyme Inhibitors; Imidazoles; Isoenzymes; Lysine; Neuroprotective Agents; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Oxidants; Peptide Fragments; Rats; Rats, Sprague-Dawley; Thiourea; Time Factors | 2001 |
DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells.
Reactive oxygen species have been shown to be involved in the mutagenicity, clastogenicity, and apoptosis of mammalian cells treated with arsenic or cadmium. As these endpoints require several hours of cellular processing, it is not clear that reactive oxygen species damage DNA directly or interfere with DNA replication and repair. Using single-cell alkaline electrophoresis, we have detected DNA strand breaks (DSBs) in bovine aortic endothelial cells by a 4-h treatment with sodium arsenite (As) and cadmium chloride (Cd) in sublethal concentrations. As-induced DSBs could be decreased by nitric oxide (NO) synthase inhibitors, superoxide scavengers, and peroxynitrite scavengers and could be increased by superoxide generators and NO generators. Treatment with As also increased nitrite production. These results suggest that As-increased NO may react with O2*- to produce peroxynitrite and cause DNA damage. The results showing that Cd increased cellular H2O2 levels and that Cd-induced DSBs could be modulated by various oxidant modulators suggest that Cd may induce DSBs via O2*-, H2O2, and *OH. Nevertheless, the DSBs in both As- and Cd-treated cells seem to come from the excision of oxidized bases such as formamidopyrimidine and 8-oxoguanine, as the Escherichia coli enzyme formamidopyrimidine-DNA glycosylase (Fpg) increased DSBs in cells treated with As, 3-morpholinosydnonimine (a peroxynitrite-generating agent), Cd, or H2O2. Topics: Amitrole; Animals; Antioxidants; Aorta; Arsenites; Bacterial Proteins; Cadmium Chloride; Catalase; Cattle; Cells, Cultured; Chromans; Citrulline; Ditiocarb; DNA Damage; DNA-Formamidopyrimidine Glycosylase; Endothelium, Vascular; Enzyme Inhibitors; Escherichia coli Proteins; Free Radical Scavengers; Hydrogen Peroxide; Molsidomine; Mutagens; N-Glycosyl Hydrolases; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroarginine; Onium Compounds; Phenanthrolines; Reactive Oxygen Species; Sodium Compounds; Sodium Selenite; Superoxide Dismutase; Superoxides; Thiomalates; Thiourea; Uric Acid | 2000 |