thiourea has been researched along with 2-thiomalic-acid* in 2 studies
2 other study(ies) available for thiourea and 2-thiomalic-acid
Article | Year |
---|---|
Ultra trace analysis of small molecule by label-free impedimetric immunosensor using multilayer modified electrode.
A multilayer electrode modified with a self-assembled thiourea monolayer (SATUM) followed by gold nanoparticles (AuNPs), mercaptosuccinic acid (MSA) and antibody was investigated for the detection of ultra trace amount of a small molecule (chloramphenicol) in an impedimetric system. The formation of the antibody-antigen complex at the electrode surface caused the impedance to increase. Under optimum conditions three modified electrodes were compared the SATUM/AuNPs/MSA electrode provided a wide linear range (0.50-10) × 10⁻¹⁶ M, and a very low determination limit of 1.0 × 10⁻¹⁶ M. This determination limit was much lower than the SATUM/AuNPs electrode, 1.0 × 10⁻¹⁵ M, and SATUM electrode, 4.7 × 10⁻¹⁴ M. The modified electrode provided good selectivity for chloramphenicol detection and can be reused up to 45 times with a relative standard deviation of lower than 4%. When applied to determine chloramphenicol in shrimp samples, the results agreed well with those obtained by the high-performance liquid chromatography coupled with a photo diode array detector (P > 0.05). The developed system can be applied to detect other small molecules using appropriate affinity binding pairs. Topics: Animals; Antibodies, Immobilized; Biosensing Techniques; Chloramphenicol; Chromatography, High Pressure Liquid; Electric Impedance; Electrochemical Techniques; Electrodes; Flow Injection Analysis; Food Contamination; Gold; Limit of Detection; Metal Nanoparticles; Reproducibility of Results; Shellfish; Thiomalates; Thiourea | 2011 |
DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells.
Reactive oxygen species have been shown to be involved in the mutagenicity, clastogenicity, and apoptosis of mammalian cells treated with arsenic or cadmium. As these endpoints require several hours of cellular processing, it is not clear that reactive oxygen species damage DNA directly or interfere with DNA replication and repair. Using single-cell alkaline electrophoresis, we have detected DNA strand breaks (DSBs) in bovine aortic endothelial cells by a 4-h treatment with sodium arsenite (As) and cadmium chloride (Cd) in sublethal concentrations. As-induced DSBs could be decreased by nitric oxide (NO) synthase inhibitors, superoxide scavengers, and peroxynitrite scavengers and could be increased by superoxide generators and NO generators. Treatment with As also increased nitrite production. These results suggest that As-increased NO may react with O2*- to produce peroxynitrite and cause DNA damage. The results showing that Cd increased cellular H2O2 levels and that Cd-induced DSBs could be modulated by various oxidant modulators suggest that Cd may induce DSBs via O2*-, H2O2, and *OH. Nevertheless, the DSBs in both As- and Cd-treated cells seem to come from the excision of oxidized bases such as formamidopyrimidine and 8-oxoguanine, as the Escherichia coli enzyme formamidopyrimidine-DNA glycosylase (Fpg) increased DSBs in cells treated with As, 3-morpholinosydnonimine (a peroxynitrite-generating agent), Cd, or H2O2. Topics: Amitrole; Animals; Antioxidants; Aorta; Arsenites; Bacterial Proteins; Cadmium Chloride; Catalase; Cattle; Cells, Cultured; Chromans; Citrulline; Ditiocarb; DNA Damage; DNA-Formamidopyrimidine Glycosylase; Endothelium, Vascular; Enzyme Inhibitors; Escherichia coli Proteins; Free Radical Scavengers; Hydrogen Peroxide; Molsidomine; Mutagens; N-Glycosyl Hydrolases; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroarginine; Onium Compounds; Phenanthrolines; Reactive Oxygen Species; Sodium Compounds; Sodium Selenite; Superoxide Dismutase; Superoxides; Thiomalates; Thiourea; Uric Acid | 2000 |