thiouracil and 4-thiouracil

thiouracil has been researched along with 4-thiouracil* in 33 studies

Reviews

2 review(s) available for thiouracil and 4-thiouracil

ArticleYear
Global analysis of RNA metabolism using bio-orthogonal labeling coupled with next-generation RNA sequencing.
    Methods (San Diego, Calif.), 2019, 02-15, Volume: 155

    Many open questions in RNA biology relate to the kinetics of gene expression and the impact of RNA binding regulatory factors on processing or decay rates of particular transcripts. Steady state measurements of RNA abundance obtained from RNA-seq approaches are not able to separate the effects of transcription from those of RNA decay in the overall abundance of any given transcript, instead only giving information on the (presumed steady-state) abundances of transcripts. Through the combination of metabolic labeling and high-throughput sequencing, several groups have been able to measure both transcription rates and decay rates of the entire transcriptome of an organism in a single experiment. This review focuses on the methodology used to specifically measure RNA decay at a global level. By comparing and contrasting approaches and describing the experimental protocols in a modular manner, we intend to provide both experienced and new researchers to the field the ability to combine aspects of various protocols to fit the unique needs of biological questions not addressed by current methods.

    Topics: Animals; Biotin; Bromouracil; Cell Line; Click Chemistry; High-Throughput Nucleotide Sequencing; Humans; RNA Stability; RNA, Messenger; Staining and Labeling; Thiouracil; Thiouridine; Transcriptome; Uracil; Uridine

2019
Uncovering cell type-specific complexities of gene expression and RNA metabolism by TU-tagging and EC-tagging.
    Wiley interdisciplinary reviews. Developmental biology, 2018, Volume: 7, Issue:4

    Cell type-specific transcription is a key determinant of cell fate and function. An ongoing challenge in biology is to develop robust and stringent biochemical methods to explore gene expression with cell type specificity. This challenge has become even greater as researchers attempt to apply high-throughput RNA analysis methods under in vivo conditions. TU-tagging and EC-tagging are in vivo biosynthetic RNA tagging techniques that allow spatial and temporal specificity in RNA purification. Spatial specificity is achieved through targeted expression of pyrimidine salvage enzymes (uracil phosphoribosyltransferase and cytosine deaminase) and temporal specificity is achieved by controlling exposure to bioorthogonal substrates of these enzymes (4-thiouracil and 5-ethynylcytosine). Tagged RNAs can be purified from total RNA extracted from an animal or tissue and used in transcriptome profiling analyses. In addition to identifying cell type-specific mRNA profiles, these techniques are applicable to noncoding RNAs and can be used to measure RNA transcription and decay. Potential applications of TU-tagging and EC-tagging also include fluorescent RNA imaging and selective definition of RNA-protein interactions. TU-tagging and EC-tagging hold great promise for supporting research at the intersection of RNA biology and developmental biology. This article is categorized under: Technologies > Analysis of the Transcriptome.

    Topics: Animals; Cytosine; Gene Expression Profiling; Humans; Models, Genetic; RNA; Thiouracil; Transcription, Genetic

2018

Other Studies

31 other study(ies) available for thiouracil and 4-thiouracil

ArticleYear
Non-radioactive In Vivo Labeling of RNA with 4-Thiouracil.
    Methods in molecular biology (Clifton, N.J.), 2022, Volume: 2533

    RNA molecules and their expression dynamics play essential roles in the establishment of complex cellular phenotypes and/or in the rapid cellular adaption to environmental changes. Accordingly, analyzing RNA expression remains an important step to understand the molecular basis controlling the formation of cellular phenotypes, cellular homeostasis or disease progression. Steady-state RNA levels in the cells are controlled by the sum of highly dynamic molecular processes contributing to RNA expression and can be classified in transcription, maturation and degradation. The main goal of analyzing RNA dynamics is to disentangle the individual contribution of these molecular processes to the life cycle of a given RNA under different physiological conditions. In the recent years, the use of nonradioactive nucleotide/nucleoside analogs and improved chemistry, in combination with time-dependent and high-throughput analysis, have greatly expanded our understanding of RNA metabolism across various cell types, organisms, and growth conditions.In this chapter, we describe a step-by-step protocol allowing pulse labeling of RNA with the nonradioactive nucleotide analog, 4-thiouracil , in the eukaryotic model organism Saccharomyces cerevisiae and the model archaeon Haloferax volcanii .

    Topics: Haloferax volcanii; Nucleotides; RNA; Saccharomyces cerevisiae; Thiouracil

2022
Investigating the mapping of chromophore excitations onto the electron detachment spectrum: photodissociation spectroscopy of iodide ion-thiouracil clusters.
    Physical chemistry chemical physics : PCCP, 2021, Jan-21, Volume: 23, Issue:2

    Laser photodissociation spectroscopy (3.1-5.7 eV) has been applied to iodide complexes of the non-native nucleobases, 2-thiouracil (2-TU), 4-thiouracil (4-TU) and 2,4-thiouracil (2,4-TU), to probe the excited states and intracluster electron transfer as a function of sulphur atom substitution. Photodepletion is strong for all clusters (I-·2-TU, I-·4-TU and I-·2,4-TU) and is dominated by electron detachment processes. For I-·4-TU and I-·2,4-TU, photodecay is accompanied by formation of the respective molecular anions, 4-TU- and 2,4-TU-, behaviour that is not found for other nucleobases. Notably, the I-·2TU complex does not fragment with formation of its molecular anion. We attribute the novel formation of 4-TU- and 2,4-TU- to the fact that these valence anions are significantly more stable than 2-TU-. We observe further similar behaviour for I-·4-TU and I-·2,4-TU relating to the general profile of their photodepletion spectra, since both strongly resemble the intrinsic absorption spectra of the respective uncomplexed thiouracil molecule. This indicates that the nucleobase chromophore excitations are determining the clusters' spectral profile. In contrast, the I-·2-TU photodepletion spectrum is dominated by the electron detachment profile, with the near-threshold dipole-bound excited state being the only distinct spectral feature. We discuss these observations in the context of differences in the dipole moments of the thionucleobases, and their impact on the coupling of nucleobase-centred transitions onto the electron detachment spectrum.

    Topics: Electrons; Iodides; Molecular Structure; Spectrum Analysis; Thiouracil; Ultraviolet Rays

2021
Extremely Rapid and Specific Metabolic Labelling of RNA In Vivo with 4-Thiouracil (Ers4tU).
    Journal of visualized experiments : JoVE, 2019, 08-22, Issue:150

    The nucleotide analogue, 4-thiouracil (4tU), is readily taken up by cells and incorporated into RNA as it is transcribed in vivo, allowing isolation of the RNA produced during a brief period of labelling. This is done by attaching a biotin moiety to the incorporated thio group and affinity purifying, using streptavidin coated beads. Achieving a good yield of pure, newly synthesized RNA that is free of pre-existing RNA makes shorter labelling times possible and permits increased temporal resolution in kinetic studies. This is a protocol for very specific, high yield purification of newly synthesized RNA. The protocol presented here describes how RNA is extracted from the yeast Saccharomyces cerevisiae. However, the protocol for purification of thiolated RNA from total RNA should be effective using RNA from any organism once it has been extracted from the cells. The purified RNA is suitable for analysis by many widely used techniques, such as reverse transcriptase-qPCR, RNA-seq and SLAM-seq. The specificity, sensitivity and flexibility of this technique allow unparalleled insights into RNA metabolism.

    Topics: Biotin; Chromatography, Affinity; Gene Expression Regulation; Gene Expression Regulation, Fungal; Kinetics; RNA; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Streptavidin; Thiouracil

2019
Defining the RNA interactome by total RNA-associated protein purification.
    Molecular systems biology, 2019, 04-08, Volume: 15, Issue:4

    The RNA binding proteome (RBPome) was previously investigated using UV crosslinking and purification of poly(A)-associated proteins. However, most cellular transcripts are not polyadenylated. We therefore developed total RNA-associated protein purification (TRAPP) based on 254 nm UV crosslinking and purification of all RNA-protein complexes using silica beads. In a variant approach (PAR-TRAPP), RNAs were labelled with 4-thiouracil prior to 350 nm crosslinking. PAR-TRAPP in yeast identified hundreds of RNA binding proteins, strongly enriched for canonical RBPs. In comparison, TRAPP identified many more proteins not expected to bind RNA, and this correlated strongly with protein abundance. Comparing TRAPP in yeast and

    Topics: Cross-Linking Reagents; Escherichia coli; Escherichia coli Proteins; Ribonucleoproteins; RNA; RNA-Binding Proteins; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Thiouracil

2019
Sequencing cell-type-specific transcriptomes with SLAM-ITseq.
    Nature protocols, 2019, Volume: 14, Issue:8

    Analysis of cell-type-specific transcriptomes is vital for understanding the biology of tissues and organs in the context of multicellular organisms. In this Protocol Extension, we combine a previously developed cell-type-specific metabolic RNA labeling method (thiouracil (TU) tagging) and a pipeline to detect the labeled transcripts by a novel RNA sequencing (RNA-seq) method, SLAMseq (thiol (SH)-linked alkylation for the metabolic sequencing of RNA). By injecting a uracil analog, 4-thiouracil, into transgenic mice that express cell-type-specific uracil phosphoribosyltransferase (UPRT), an enzyme required for 4-thiouracil incorporation into newly synthesized RNA, only cells expressing UPRT synthesize thiol-containing RNA. Total RNA isolated from a tissue of interest is then sequenced with SLAMseq, which introduces thymine to cytosine (T>C) conversions at the sites of the incorporated 4-thiouracil. The resulting sequencing reads are then mapped with the T>C-aware alignment software, SLAM-DUNK, which allows mapping of reads containing T>C mismatches. The number of T>C conversions per transcript is further analyzed to identify which transcripts are synthesized in the UPRT-expressing cells. Thus, our method, SLAM-ITseq (SLAMseq in tissue), enables cell-specific transcriptomics without laborious FACS-based cell sorting or biochemical isolation of the labeled transcripts used in TU tagging. In the murine tissues we assessed previously, this method identified ~5,000 genes that are expressed in a cell type of interest from the total RNA pool from the tissue. Any laboratory with access to a high-throughput sequencer and high-power computing can adapt this protocol with ease, and the entire pipeline can be completed in <5 d.

    Topics: Animals; Female; Gene Expression Profiling; High-Throughput Nucleotide Sequencing; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Organ Specificity; Pentosyltransferases; Sequence Analysis, RNA; Thiouracil; Transcriptome

2019
Determining mRNA Decay Rates Using RNA Approach to Equilibrium Sequencing (RATE-Seq).
    Methods in molecular biology (Clifton, N.J.), 2018, Volume: 1720

    RATE-seq is a 4-thiouracil (4-tU)-based method that enables the in vivo measurement of transcriptome-wide RNA degradation rates. 4-tU is an analog of uracil that is rapidly incorporated into newly synthesized RNA and facilitates the conjugation of a biotinylated molecule containing a reactive thiol group. The biotinylated RNA can then be fractionated from the unlabeled RNA with streptavidin magnetic beads. By adding 4-tU to a culture of cells growing in steady-state conditions, fractionating the labeled population of RNA at multiple time points following 4-tU addition, and quantifying the abundance of newly transcribed RNAs using RNAseq, it is possible to estimate the degradation rates of all transcripts in a single experiment. The analysis of the RATE-seq data entails normalization of RNAseq libraries to thiolated RNA spike-ins and nonlinear model fitting to estimate the degradation rate constant for each RNA species.

    Topics: Biotinylation; Cell Culture Techniques; High-Throughput Nucleotide Sequencing; Magnetic Phenomena; Nonlinear Dynamics; RNA Stability; RNA, Messenger; Sequence Analysis, RNA; Streptavidin; Thiouracil; Transcriptome

2018
SLAM-ITseq: sequencing cell type-specific transcriptomes without cell sorting.
    Development (Cambridge, England), 2018, 07-11, Volume: 145, Issue:13

    Cell type-specific transcriptome analysis is an essential tool for understanding biological processes in which diverse types of cells are involved. Although cell isolation methods such as fluorescence-activated cell sorting (FACS) in combination with transcriptome analysis have widely been used so far, their time-consuming and harsh procedures limit their applications. Here, we report a novel

    Topics: Adipocytes, White; Animals; Brain; Endothelial Cells; Flow Cytometry; High-Throughput Nucleotide Sequencing; Mice; RNA; Staining and Labeling; Thiouracil; Transcriptome

2018
Selective 4-Thiouracil Labeling of RNA Transcripts within Latently Infected Cells after Infection with Human Cytomegalovirus Expressing Functional Uracil Phosphoribosyltransferase.
    Journal of virology, 2018, 11-01, Volume: 92, Issue:21

    Infections with human cytomegalovirus (HCMV) are highly prevalent in the general population as the virus has evolved the capacity to undergo distinct replication strategies resulting in lytic, persistent, and latent infections. During the latent life cycle, HCMV resides in subsets of cells within the hematopoietic cell compartment, including hematopoietic progenitor cells (HPCs) and peripheral blood monocytes. Since only a small fraction of these cell types harbor viral genomes during natural latency, identification and analysis of distinct changes mediated by viral infection are difficult to assess. In order to characterize latent infections of HPCs, we used an approach that involves complementation of deficiencies within the human pyrimidine salvage pathway, thus allowing for conversion of labeled uracil into rUTP. Here, we report the development of a recombinant HCMV that complements the defective human pyrimidine salvage pathway, allowing incorporation of thiol containing UTP into all RNA species that are synthesized within an infected cell. This virus grows to wild-type kinetics and can establish a latent infection within two distinct culture models of HCMV latency. Using this recombinant HCMV, we report the specific labeling of transcripts only within infected cells. These transcripts reveal a transcriptional landscape during HCMV latency that is distinct from uninfected cells. The utility of this labeling system allows for the identification of distinct changes within host transcripts and will shed light on characterizing how HCMV establishes and maintains latency.

    Topics: Cells, Cultured; Cytomegalovirus; Cytomegalovirus Infections; Humans; Pentosyltransferases; RNA, Viral; Staining and Labeling; Thiouracil; Uracil; Virus Latency

2018
Saccharomyces cerevisiae Metabolic Labeling with 4-thiouracil and the Quantification of Newly Synthesized mRNA As a Proxy for RNA Polymerase II Activity.
    Journal of visualized experiments : JoVE, 2018, 10-22, Issue:140

    Global defects in RNA polymerase II transcription might be overlooked by transcriptomic studies analyzing steady-state RNA. Indeed, the global decrease in mRNA synthesis has been shown to be compensated by a simultaneous decrease in mRNA degradation to restore normal steady-state levels. Hence, the genome-wide quantification of mRNA synthesis, independently from mRNA decay, is the best direct reflection of RNA polymerase II transcriptional activity. Here, we discuss a method using non-perturbing metabolic labeling of nascent RNAs in Saccharomyces cerevisiae (S. cerevisiae). Specifically, the cells are cultured for 6 min with a uracil analog, 4-thiouracil, and the labeled newly transcribed RNAs are purified and quantified to determine the synthesis rates of all individual mRNA. Moreover, using labeled Schizosaccharomyces pombe cells as internal standard allows comparing mRNA synthesis in different S. cerevisiae strains. Using this protocol and fitting the data with a dynamic kinetic model, the corresponding mRNA decay rates can be determined.

    Topics: RNA Polymerase II; RNA, Messenger; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Thiouracil

2018
RNA interactome capture in yeast.
    Methods (San Diego, Calif.), 2017, 04-15, Volume: 118-119

    RNA-binding proteins (RBPs) are key players in post-transcriptional regulation of gene expression in eukaryotic cells. To be able to unbiasedly identify RBPs in Saccharomyces cerevisiae, we developed a yeast RNA interactome capture protocol which employs RNA labeling, covalent UV crosslinking of RNA and proteins at 365nm wavelength (photoactivatable-ribonucleoside-enhanced crosslinking, PAR-CL) and finally purification of the protein-bound mRNA. The method can be easily implemented in common workflows and takes about 3days to complete. Next to a comprehensive explanation of the method, we focus on our findings about the choice of crosslinking in yeast and discuss the rationale of individual steps in the protocol.

    Topics: Antibodies; Base Sequence; Binding Sites; Gene Library; High-Throughput Nucleotide Sequencing; Immunoprecipitation; Mass Spectrometry; Photochemical Processes; Protein Binding; Ribonucleases; RNA-Binding Proteins; RNA, Messenger; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sequence Analysis, RNA; Staining and Labeling; Sulfur Radioisotopes; Thiouracil; Transcriptome; Ultraviolet Rays

2017
"Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".
    BMC genomics, 2016, Feb-03, Volume: 17

    Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking.. Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run").. Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the functional read-out of de novo transcripts produced by transient TF-target interactions allowed us to capture new models for genome-wide transcriptional control.

    Topics: Basic-Leucine Zipper Transcription Factors; Binding Sites; Gene Expression Regulation; Models, Biological; Nucleotide Motifs; Promoter Regions, Genetic; Protein Binding; Thiouracil; Transcription Initiation, Genetic; Transcription, Genetic

2016
Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil.
    The Journal of chemical physics, 2016, Feb-21, Volume: 144, Issue:7

    Ground- and excited-state UV photoelectron spectra of thiouracils (2-thiouracil, 4-thiouracil, and 2,4-dithiouracil) have been simulated using multireference configuration interaction calculations and Dyson norms as a measure for the photoionization intensity. Except for a constant shift, the calculated spectrum of 2-thiouracil agrees very well with experiment, while no experimental spectra are available for the two other compounds. For all three molecules, the photoelectron spectra show distinct bands due to ionization of the sulphur and oxygen lone pairs and the pyrimidine π system. The excited-state photoelectron spectra of 2-thiouracil show bands at much lower energies than in the ground state spectrum, allowing to monitor the excited-state population in time-resolved UV photoelectron spectroscopy experiments. However, the results also reveal that single-photon ionization probe schemes alone will not allow monitoring all photodynamic processes existing in 2-thiouracil. Especially, due to overlapping bands of singlet and triplet states the clear observation of intersystem crossing will be hampered.

    Topics: Models, Chemical; Photoelectron Spectroscopy; Thiouracil

2016
Energetic stabilities of thiolated pyrimidines on gold nanoparticles investigated by Raman spectroscopy and density functional theory calculations.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2015, Volume: 150

    The adsorption structures of 2-thiocytosine (2TC) on gold surfaces were examined by means of vibrational Raman spectroscopy and quantum mechanical density functional theory calculations. The 1H-thione-amino form was calculated to be most stable among the six examined tautomers. The three plausible binding geometries of sulfur, pyrimidine nitrogen, and amino group binding modes were calculated to estimate the binding energies of the 1H-thione-amino form with six gold cluster atoms. Thiouracils including 2-thiouracil (2TU), 4-thiouracil (4TU), and 6-methyl-2-thiouracil (6M2TU) were also studied to compare their relative binding energies on gold atoms. The intracellular localization of a DNA base analog of 2TC on gold nanoparticles (AuNPs) in HeLa cells was identified by means of surface-enhanced Raman scattering. AuNPs were modified with 2TC by self-assembly. Our dark-field microscopy and z-depth-dependent confocal Raman spectroscopy indicated that 2TC-assembled AuNPs could be found inside cancer cells. On the other hand, we did not observe noticeably strong Raman peaks in the cases of thiouracils including 2TU, 4TU, and 6M2TU. This may be due to the additional amino group of 2TC, which can lead to a stronger binding of adsorbates on AuNPs.

    Topics: Binding Sites; Cytosine; Gold; HeLa Cells; Humans; Metal Nanoparticles; Quantum Theory; Spectrum Analysis, Raman; Stereoisomerism; Thermodynamics; Thiouracil

2015
Identification of sensory hair-cell transcripts by thiouracil-tagging in zebrafish.
    BMC genomics, 2015, Oct-23, Volume: 16

    Sensory hair cells are exquisitely sensitive to mechanical stimuli and as such, are prone to damage and apoptosis during dissections or in vitro manipulations. Thiouracil (TU)-tagging is a noninvasive method to label cell type-specific transcripts in an intact organism, thereby meeting the challenge of how to analyze gene expression in hair cells without the need to sort cells. We adapted TU-tagging to zebrafish to identify novel transcripts expressed in the sensory hair cells of the developing acoustico-lateralis organs.. We created a transgenic line of zebrafish expressing the T.gondii uracil phospho-ribosyltransferase (UPRT) enzyme specifically in the hair cells of the inner ear and lateral line organ. RNA was labeled by exposing 3 days post-fertilization (dpf) UPRT transgenic larvae to 2.5 mM 4-thiouracil (4TU) for 15 hours. Following total RNA isolation, poly(A) mRNA enrichment, and purification of TU-tagged RNA, deep sequencing was performed on the input and TU-tagged RNA samples.. Analysis of the RNA sequencing data revealed the expression of 28 transcripts that were significantly enriched (adjusted p-value < 0.05) in the UPRT TU-tagged RNA relative to the input sample. Of the 25 TU-tagged transcripts with mammalian homologs, the expression of 18 had not been previously demonstrated in zebrafish hair cells. The hair cell-restricted expression for 17 of these transcripts was confirmed by whole mount mRNA in situ hybridization in 3 dpf larvae.. The hair cell-restricted pattern of expression of these genes offers insight into the biology of this receptor cell type and may serve as useful markers to study the development and function of sensory hair cells. In addition, our study demonstrates the utility of TU-tagging to study nascent transcripts in specific cell types that are relatively rare in the context of the whole zebrafish larvae.

    Topics: Animals; Animals, Genetically Modified; Gene Expression Regulation; Hair Cells, Auditory, Inner; High-Throughput Nucleotide Sequencing; Larva; Organ Specificity; Pentosyltransferases; RNA, Messenger; Thiouracil; Zebrafish

2015
Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling.
    Genome biology, 2015, Dec-17, Volume: 16

    RNA levels detected at steady state are the consequence of multiple dynamic processes within the cell. In addition to synthesis and decay, transcripts undergo processing. Metabolic tagging with a nucleotide analog is one way of determining the relative contributions of synthesis, decay and conversion processes globally.. By improving 4-thiouracil labeling of RNA in Saccharomyces cerevisiae we were able to isolate RNA produced during as little as 1 minute, allowing the detection of nascent pervasive transcription. Nascent RNA labeled for 1.5, 2.5 or 5 minutes was isolated and analyzed by reverse transcriptase-quantitative polymerase chain reaction and RNA sequencing. High kinetic resolution enabled detection and analysis of short-lived non-coding RNAs as well as intron-containing pre-mRNAs in wild-type yeast. From these data we measured the relative stability of pre-mRNA species with different high turnover rates and investigated potential correlations with sequence features.. Our analysis of non-coding RNAs reveals a highly significant association between non-coding RNA stability, transcript length and predicted secondary structure. Our quantitative analysis of the kinetics of pre-mRNA splicing in yeast reveals that ribosomal protein transcripts are more efficiently spliced if they contain intron secondary structures that are predicted to be less stable. These data, in combination with previous results, indicate that there is an optimal range of stability of intron secondary structures that allows for rapid splicing.

    Topics: Introns; Nucleic Acid Conformation; RNA Processing, Post-Transcriptional; RNA Stability; RNA, Messenger; RNA, Untranslated; Saccharomyces cerevisiae; Thiouracil; Transcriptome

2015
Photophysical and photochemical properties of 4-thiouracil: time-resolved IR spectroscopy and DFT studies.
    The journal of physical chemistry. B, 2014, Jun-05, Volume: 118, Issue:22

    Intensified research interests are posed with the thionucleobase 4-thiouracil (4-TU), due to its important biological function as site-specific photoprobe to detect RNA structures and nucleic acid-nucleic acid contacts. By means of time-resolved IR spectroscopy and density functional theory (DFT) studies, we have examined the unique photophysical and photochemical properties of 4-TU. It is shown that 4-TU absorbs UVA light and results in the triplet formation with a high quantum yield (0.9). Under N2-saturated anaerobic conditions, the reactive triplet undergoes mainly cross-linking, leading to the (5-4)/(6-4) pyrimidine-pyrimidone product. In the presence of O2 under aerobic conditions, the triplet 4-TU acts as an energy donor to produce singlet oxygen (1)O2 by triplet-triplet energy transfer. The highly reactive oxygen species (1)O2 then reacts readily with 4-TU, leading to the products of uracil (U) with a yield of 0.2 and uracil-6-sulfonate (U(SO3)) that is fluorescent at ~390 nm. The product formation pathways and product distribution are well rationalized by the joint B3LYP/6-311+G(d,p) calculations. From dynamics and mechanistic point of views, these results enable a further understanding for 4-TU acting as reactive precursors for photochemical reactions relevant to (1)O2, which has profound implications for photo cross-linking, DNA photodamage, as well as photodynamic therapy studies.

    Topics: Light; Models, Molecular; Oxygen; Quantum Theory; Singlet Oxygen; Spectrophotometry, Infrared; Thiouracil

2014
Hydration energies of protonated and sodiated thiouracils.
    Journal of the American Society for Mass Spectrometry, 2014, Volume: 25, Issue:12

    Hydration reactions of protonated and sodiated thiouracils (2-thiouracil, 6-methyl-2-thiouracil, and 4-thiouracil) generated by electrospray ionization have been studied in a gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH(o)n, ΔS(o)n, and ΔG(o)n, for the hydrated systems were obtained by equilibrium measurements. The water binding energies of protonated thiouracils, [2SU]H(+) and [6Me2SU]H(+), were found to be of the order of 51 kJ/mol for the first, and 46 kJ/mol for the second water molecule. For [4SU]H(+), these values are 3-4 kJ/mol lower. For sodiated complexes, these energies are similar for all studied systems, and varied between 62 and 68 kJ/mol for the first and between 48 and 51 kJ/mol for the second water molecule. The structural aspects of the precursors for hydrated complexes are discussed in conjunction with available literature data.

    Topics: Mass Spectrometry; Models, Molecular; Protons; Sodium; Thermodynamics; Thiouracil; Water

2014
Substrate inhibition of uracil phosphoribosyltransferase by uracil can account for the uracil growth sensitivity of Leishmania donovani pyrimidine auxotrophs.
    The Journal of biological chemistry, 2013, Oct-11, Volume: 288, Issue:41

    The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT. To characterize this unique parasite enzyme, LdUPRT was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Kinetic analysis revealed apparent Km values of 20 and 99 μM for the natural substrates uracil and phosphoribosylpyrophosphate, respectively, as well as apparent Km values 6 and 7 μM for the pyrimidine analogs 5-fluorouracil and 4-thiouracil, respectively. Size exclusion chromatography revealed the native LdUPRT to be tetrameric and retained partial structure and activity in high concentrations of urea. L. donovani mutants deficient in de novo pyrimidine biosynthesis, which require functional LdUPRT for growth, are hypersensitive to high concentrations of uracil, 5-fluorouracil, and 4-thiouracil in the growth medium. This hypersensitivity can be explained by the observation that LdUPRT is substrate-inhibited by uracil and 4-thiouracil, but 5-fluorouracil toxicity transpires via an alternative mechanism. This substrate inhibition of LdUPRT provides a protective mechanism for the parasite by facilitating purine and pyrimidine nucleotide pool balance and by sparing phosphoribosylpyrophosphate for consumption by the nutritionally indispensable purine salvage process.

    Topics: Cations, Divalent; Chromatography, Gel; Enzyme Stability; Feedback, Physiological; Fluorouracil; Hydrogen-Ion Concentration; Kinetics; Leishmania donovani; Mutation; Pentosyltransferases; Phosphoribosyl Pyrophosphate; Protein Multimerization; Protozoan Proteins; Pyrimidines; Recombinant Proteins; Spectrophotometry; Substrate Specificity; Temperature; Thiouracil; Uracil

2013
Photoelectron spectroscopic study of the negative ions of 4-thiouracil and 2,4-dithiouracil.
    The Journal of chemical physics, 2011, Feb-21, Volume: 134, Issue:7

    We report the photoelectron spectra of the negative ions of 4-thiouracil (4-TU)(-) and 2,4-dithiouracil (2,4-DTU)(-). Both of these spectra are indicative of valence anions, and they are each dominated by a single broad band with vertical detachment energies of 1.05 and 1.4 eV, respectively. Complementary calculations by Dolgounitcheva, Zakrzewski, and Ortiz (see companion paper) are in accord with our experimental results and conclude that the (4-TU)(-) and (2,4-DTU)(-) anions, reported herein, are valence anions of canonical 4-thiouracil and canonical dithiouracil. Comparisons among the anions and corresponding neutrals of 4-thiouracil, 2,4-dithiouracil, 5-chlorouracil, 5-fluorouracil, and uracil itself show that both sulfur and halogen modifications of uracil give rise to significant changes in the electronic structure. The electron affinities of the first four are all substantially larger than that of the canonical uracil.

    Topics: Photoelectron Spectroscopy; Thiouracil

2011
Electron propagator and coupled-cluster calculations on the photoelectron spectra of thiouracil and dithiouracil anions.
    The Journal of chemical physics, 2011, Feb-21, Volume: 134, Issue:7

    Electron affinities, vertical electron detachment energies, and isomerization energies of 4-thiouracil, 2-thiouracil, and 2,4-dithiouracil and their valence anions have been calculated with ab initio electron propagator and other many-body methods. Anions in which protons have been transferred to the C5 from the N1 or N3 ring positions have been considered, but the canonical forms are most stable for the 4-thiouracil and 2,4-dithiouracil anions. Electron affinities of 0.61, 0.26, and 0.87 eV have been determined for 4-thiouracil, 2-thiouracil, and 2,4-dithiouracil, respectively. Electron propagator calculations on the canonical anions yield vertical electron detachment energies that are in close agreement with experimental peaks at 1.05, 3.21, and 3.32 eV for 4-thiouracil and at 1.4 eV for 2,4-dithiouracil.

    Topics: Electrons; Isomerism; Models, Molecular; Molecular Conformation; Photoelectron Spectroscopy; Quantum Theory; Thiouracil

2011
Mechanism and dynamics of intramolecular triplet state decay of 1-propyl-4-thiouracil and its α-methyl-substituted derivatives studied in perfluoro-1,3-dimethylcyclohexane.
    Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 2011, Volume: 10, Issue:8

    The absorption, phosphorescence and phosphorescence excitation spectra, phosphorescence quantum yields, and T(1) excited state lifetimes of four 4-thiouracil derivatives were measured for the first time in chemically inert and very weakly interacting perfluoro-1,3-dimethylcyclohexane at room temperature. The set of the 4-thiouracil derivatives comprises 1-propyl-4-thiouracil (PTU) and the related compounds having a methyl substituent at the position α to the thiocarbonyl group, namely 1-propyl-4-thiothymine (PTT), 1,3-dimethyl-4-thiouracil (DMTU), and 1-methyl-3-trideuteriomethyl-4-thiouracil ([D(3)]DMTU). Quantitative information on the intramolecular decay of the T(1) excited state of the four 4-thiouracil derivatives is presented, and the mechanism and dynamics of this process are discussed. In the absence of self quenching and solvent induced deactivation, the T(1) decay of the four 4-thiouracil derivatives was dominated by intramolecular nonradiative processes (NR). The values of the rate constant k(NR) in DMTU and [D(3)]DMTU are about 4 times larger than that in PTT and about 3 times larger than that in PTU. The reasons for the enhanced nonradiative rate constant in DMTU are discussed. It is concluded that the faster rate of the nonradiative processes in DMTU is related to a larger contribution from mixing of the T(2) (nπ*) state into the lowest energy T(1) (ππ*) state, as compared to the analogous coupling in PTU and PTT. This conclusion is supported by ab initio calculations performed at the EOM-CC2/aug-cc-pVDZ level of theory. The energy spacing between the T(2) (nπ*) and T(1) (ππ*) states is estimated to be about 500, 1100, and 2000 cm(-1) for DMTU, PTU, and PTT, respectively. Among the three compounds in question, the predicted energy spacing is thus the smallest for DMTU.

    Topics: Fluorocarbons; Hydrocarbons, Fluorinated; Models, Theoretical; Propylthiouracil; Quantum Theory; Spectrophotometry, Ultraviolet; Thiouracil; Thymine

2011
Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay.
    Molecular biology of the cell, 2011, Aug-01, Volume: 22, Issue:15

    RNA levels are determined by the rates of both transcription and decay, and a mechanistic understanding of the complex networks regulating gene expression requires methods that allow dynamic measurements of transcription and decay in living cells with minimal perturbation. Here, we describe a metabolic pulse-chase labeling protocol using 4-thiouracil combined with large-scale RNA sequencing to determine decay rates of all mRNAs in Saccharomyces cerevisiae. Profiling in various growth and stress conditions reveals that mRNA turnover is highly regulated both for specific groups of transcripts and at the system-wide level. For example, acute glucose starvation induces global mRNA stabilization but increases the degradation of all 132 detected ribosomal protein mRNAs. This effect is transient and can be mimicked by inhibiting the target-of-rapamycin kinase. Half-lives of mRNAs critical for galactose (GAL) metabolism are also highly sensitive to changes in carbon source. The fast reduction of GAL transcripts in glucose requires their dramatically enhanced turnover, highlighting the importance of mRNA decay in the control of gene expression. The approach described here provides a general platform for the global analysis of mRNA turnover and transcription and can be applied to dissect gene expression programs in a wide range of organisms and conditions.

    Topics: Galactose; Gene Expression Regulation, Fungal; Gene Library; Genome-Wide Association Study; Genome, Fungal; Glucose; Half-Life; Ribosomal Proteins; RNA Stability; RNA, Fungal; RNA, Messenger; Saccharomyces cerevisiae; Sequence Analysis, RNA; Thiouracil; TOR Serine-Threonine Kinases; Transcription, Genetic

2011
TU-tagging: cell type-specific RNA isolation from intact complex tissues.
    Nature methods, 2009, Volume: 6, Issue:6

    We found that the combination of spatially restricted uracil phosphoribosyltransferase (UPRT) expression with 4-thiouracil delivery can be used to label and purify cell type-specific RNA from intact complex tissues in Drosophila melanogaster. This method is useful for isolating RNA from cell types that are difficult to isolate by dissection or dissociation methods and should work in many organisms, including mammals and other vertebrates.

    Topics: Animals; Drosophila melanogaster; Pentosyltransferases; RNA; Specimen Handling; Staining and Labeling; Thiouracil; Tissue Extracts

2009
Cell type-specific analysis of mRNA synthesis and decay in vivo with uracil phosphoribosyltransferase and 4-thiouracil.
    Methods in enzymology, 2008, Volume: 448

    Microarray-based analysis of mRNA expression has provided a genome-wide understanding of the genes and pathways involved in many biological processes. However, two limitations are often associated with traditional microarray experiments. First, standard methods of microarray analysis measure mRNA abundance, not mRNA synthesis or mRNA decay, and, therefore, do not provide any information regarding the mechanisms regulating transcript levels. Second, microarrays are often performed with mRNA from a mixed population of cells, and data for a specific cell-type of interest can be difficult to obtain. This chapter describes a method, referred to here as "4TU-tagging," which can be used to overcome these limitations. 4TU-Tagging uses cell type-specific expression of the uracil phosphoribosyltransferase gene of Toxoplasma gondii and the uracil analog 4-thiouracil (4TU) to selectively tag and purify RNA. Pulse-labeling of newly synthesized RNA with 4TU followed by a "chase" with unmodified uracil allows in vivo measurements of mRNA synthesis and decay in specific cells. Experimental design considerations for applying 4TU-tagging to different systems and protocols for cell type-specific RNA tagging, purification, and microarray analysis are covered in this chapter.

    Topics: Animals; Gene Expression; Humans; Organ Specificity; Pentosyltransferases; RNA Stability; RNA, Messenger; Thiouracil

2008
RNA analysis by biosynthetic tagging using 4-thiouracil and uracil phosphoribosyltransferase.
    Methods in molecular biology (Clifton, N.J.), 2008, Volume: 419

    RNA analysis by biosynthetic tagging (RABT) enables sensitive and specific queries of (a) how gene expression is regulated on a genome-wide scale and (b) transcriptional profiling of a single cell or tissue type in vivo. RABT can be achieved by exploiting unique properties of Toxoplasma gondii uracil phosphoribosyltransferase (TgUPRT), a pyrimidine salvage enzyme that couples ribose-5-phosphate to the N1 nitrogen of uracil to yield uridine monophosphate (UMP). When 4-thiouracil is provided as a TgUPRT substrate, the resultant product is 4-thiouridine monophosphate which can, ultimately, be incorporated into RNA. Thio-substituted nucleotides are not a natural component of nucleic acids and are readily tagged, detected, and purified with commercially available reagents. Thus, one can do pulse/chase experiments to measure synthesis and decay rates and/or use cell-specific expression of the TgUPRT to tag only RNA synthesized in a given cell type. This chapter updates the original RABT protocol (1) and addresses methodological details associated with RABT that were beyond the scope or space allotment of the initial report.

    Topics: Animals; Biotinylation; Blotting, Northern; Gene Expression Profiling; Gene Expression Regulation; Molecular Biology; Pentosyltransferases; RNA; Substrate Specificity; Thionucleotides; Thiouracil; Toxoplasma

2008
Ribozyme motif structure mapped using random recombination and selection.
    RNA (New York, N.Y.), 2005, Volume: 11, Issue:4

    Isolating the core functional elements of an RNA is normally performed during the characterization of a new RNA in order to simplify further biochemical analysis. The removal of extraneous sequence is challenging and can lead to biases that result from the incomplete sampling of deletion variants. An impartial solution to this problem is to construct a library containing a large number of deletion constructs and to select functional RNA isolates that are at least as efficient as their full-length progenitors. Here, we use nonhomologous recombination and selection to isolate the catalytic core of a pyrimidine nucleotide synthase ribozyme. A variable-length pool of approximately 10(8) recombinant molecules that included deletions, inversions, and translocations of a 271-nucleotide-long ribozyme isolate was constructed by digesting and randomly religating its DNA genome. In vitro selection for functional ribozymes was then performed in a size-dependent and a size-independent manner. The final pools had nearly equivalent catalytic rates even though their length distributions were completely different, indicating that a diverse range of deletion constructs were functionally active. Four short sequence islands, requiring as little as 81 nt of sequence, were found within all of the truncated ribozymes and could be folded into a secondary structure consisting of three helix-loops. Our findings suggest that nonhomologous recombination is a highly efficient way to isolate a ribozyme's core motif and could prove to be a useful method for evolving new ribozyme functions from pre-existing sequences in a manner that may have played an important role early in evolution.

    Topics: Base Sequence; Deoxyribonuclease I; DNA Ligases; DNA-Directed DNA Polymerase; Gene Library; Molecular Sequence Data; Nucleic Acid Conformation; Nucleotide Mapping; Phosphoric Monoester Hydrolases; Pyrimidine Nucleotides; Recombination, Genetic; Reverse Transcriptase Polymerase Chain Reaction; RNA, Catalytic; Sequence Alignment; Sequence Analysis, DNA; Sequence Deletion; Thiouracil

2005
Photocrosslinking of 4-thio uracil-containing RNAs supports a side-by-side arrangement of domains 5 and 6 of a group II intron.
    RNA (New York, N.Y.), 1999, Volume: 5, Issue:2

    Previous studies suggested that domains 5 and 6 (D5 and D6) of group II introns act together in splicing and that the two helical structures probably do not interact by helix stacking. Here, we characterized the major Mg2+ ion- and salt-dependent, long-wave UV light-induced, intramolecular crosslinks formed in 4-thiouridine-containing D56 RNA from intron 5gamma (aI5gamma) of the COXI gene of yeast mtDNA. Four major crosslinks were mapped and found to result from covalent bonds between nucleotides separating D5 from D6 [called J(56)] and residues of D6 near and including the branch nucleotide. These findings are extended by results of similar experiments using 4-thioU containing D56 RNAs from a mutant allele of aI5gamma and from the group IIA intron, aI1. Trans-splicing experiments show that the crosslinked wild-type aI5gamma D56 RNAs are active for both splicing reactions, including some first-step branching. An RNA containing the 3-nt J(56) sequence and D6 of aI5gamma yields one main crosslink that is identical to the most minor of the crosslinks obtained with D56 RNA, but in this case in a cation-independent fashion. We conclude that the interaction between J(56) and D6 is influenced by charge repulsion between the D5 and D6 helix backbones and that high concentrations of cations allow the helices to approach closely under self-splicing conditions. The interaction between J(56) and D6 appears to be a significant factor establishing a side-by-side (i.e., not stacked) orientation of the helices of the two domains.

    Topics: Base Sequence; Cross-Linking Reagents; Introns; Molecular Sequence Data; Nucleic Acid Conformation; RNA; RNA Splicing; RNA, Fungal; RNA, Mitochondrial; Thiouracil; Ultraviolet Rays

1999
RNA-catalysed nucleotide synthesis.
    Nature, 1998, Sep-17, Volume: 395, Issue:6699

    The 'RNA world' hypothesis proposes that early life developed by making use of RNA molecules, rather than proteins, to catalyse the synthesis of important biological molecules. It is thought, however, that the nucleotides constituting RNA were scarce on early Earth. RNA-based life must therefore have acquired the ability to synthesize RNA nucleotides from simpler and more readily available precursors, such as sugars and bases. Plausible prebiotic synthesis routes have been proposed for sugars, sugar phosphates and the four RNA bases, but the coupling of these molecules into nucleotides, specifically pyrimidine nucleotides, poses a challenge to the RNA world hypothesis. Here we report the application of in vitro selection to isolate RNA molecules that catalyse the synthesis of a pyrimidine nucleotide at their 3' terminus. The finding that RNA can catalyse this type of reaction, which is modelled after pyrimidine synthesis in contemporary metabolism, supports the idea of an RNA world that included nucleotide synthesis and other metabolic pathways mediated by ribozymes.

    Topics: Catalysis; Chromatography, Thin Layer; Molecular Sequence Data; Nucleotides; Pyrimidines; Ribose; RNA, Catalytic; Thiouracil; Thiouridine

1998
[Quantitative determination of diethylthiobarbituric acid, 4-methyl and 4-propyl-2-thiouracil in tablets. III. Titration of C-S compounds].
    Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft, 1952, Volume: 22, Issue:6

    Topics: Barbiturates; Tablets; Thiouracil

1952
[Quantitative determination of 2-thiouracil, 4-methyl-2-thiouracil and 4-propyl-2-thiouracil].
    Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie, 1951, Volume: 213, Issue:1-2

    Topics: Methylthiouracil; Thiouracil

1951
An investigation of the inorganic iodine content of the saliva in hyperthyroidism following the administration of potassium iodide, and the effect of 2-thiouracil and 4-methyl thiouracil thereon.
    The Medical journal of Australia, 1948, Apr-03, Volume: 1, Issue:14

    Topics: Humans; Hyperthyroidism; Iodine; Iodine Compounds; Potassium Iodide; Saliva; Thiouracil; Thiourea; Thyroid Gland

1948