Page last updated: 2024-08-16

thioridazine and quetiapine

thioridazine has been researched along with quetiapine in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (12.50)18.2507
2000's3 (37.50)29.6817
2010's4 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Audinot, V; Chaput, C; Conte, C; Gavaudan, S; Millan, MJ; Newman-Tancredi, A; Touzard, M; Verrièle, L1
Chen, XL; Kang, J; Kongsamut, S; Rampe, D; Roehr, J1
Ernsberger, P; Hufeisen, SJ; Jayathilake, K; Kroeze, WK; Meltzer, HY; Popadak, BA; Renock, SM; Roth, BL; Steinberg, S1
Ahman, M; Holmén, AG; Wan, H1
Sen, S; Sinha, N1
Cooper, J; Cui, Y; Fink, M; Gavaghan, DJ; Heath, BM; McMahon, NC; Mirams, GR; Noble, D; Sher, A1
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for thioridazine and quetiapine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

7 other study(ies) available for thioridazine and quetiapine

ArticleYear
Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.
    European journal of pharmacology, 1998, Aug-21, Volume: 355, Issue:2-3

    Topics: Animals; Antipsychotic Agents; CHO Cells; Cricetinae; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Receptors, Serotonin; Receptors, Serotonin, 5-HT1; Serotonin Agents; Sulfur Radioisotopes

1998
A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs.
    European journal of pharmacology, 2002, Aug-16, Volume: 450, Issue:1

    Topics: Animals; Antipsychotic Agents; Cation Transport Proteins; Cell Line; Clinical Trials as Topic; Cricetinae; DNA-Binding Proteins; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Long QT Syndrome; Patch-Clamp Techniques; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Radioligand Assay; Receptor, Serotonin, 5-HT2A; Receptors, Dopamine D2; Receptors, Serotonin; Trans-Activators; Transcriptional Regulator ERG

2002
H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2003, Volume: 28, Issue:3

    Topics: Animals; Antipsychotic Agents; Discriminant Analysis; Drug Evaluation, Preclinical; Forecasting; Humans; Protein Binding; Receptors, Histamine H1; Statistics, Nonparametric; Weight Gain

2003
Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.
    Journal of medicinal chemistry, 2009, Mar-26, Volume: 52, Issue:6

    Topics: Brain; Central Nervous System; Chromatography, Liquid; Emulsions; Mass Spectrometry

2009
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:2

    Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship

2011
Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk.
    Cardiovascular research, 2011, Jul-01, Volume: 91, Issue:1

    Topics: Action Potentials; Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Computer Simulation; Dogs; Dose-Response Relationship, Drug; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Guinea Pigs; HEK293 Cells; Humans; Ion Channels; Kinetics; Models, Cardiovascular; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Potassium Channel Blockers; Rabbits; Risk Assessment; Risk Factors; Sodium Channel Blockers; Sodium Channels; Torsades de Pointes; Transfection

2011
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
    Journal of applied toxicology : JAT, 2012, Volume: 32, Issue:10

    Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers

2012