Page last updated: 2024-08-16

thioridazine and norfloxacin

thioridazine has been researched along with norfloxacin in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (50.00)29.6817
2010's4 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Carrupt, PA; Crivori, P; Cruciani, G; Testa, B1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Bailey, AM; Paulsen, IT; Piddock, LJ1
Antonsson, M; Bengtsson, O; Bredberg, U; Fridén, M; Hammarlund-Udenaes, M; Jerndal, G; Wan, H; Winiwarter, S1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Ahlin, G; Bergström, F; Bredberg, U; Fridén, M; Hammarlund-Udenaes, M; Rehngren, M; Wan, H1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for thioridazine and norfloxacin

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

7 other study(ies) available for thioridazine and norfloxacin

ArticleYear
Predicting blood-brain barrier permeation from three-dimensional molecular structure.
    Journal of medicinal chemistry, 2000, Jun-01, Volume: 43, Issue:11

    Topics: Blood-Brain Barrier; Databases, Factual; Models, Chemical; Molecular Conformation; Multivariate Analysis; Permeability; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine.
    Antimicrobial agents and chemotherapy, 2008, Volume: 52, Issue:10

    Topics: Anti-Bacterial Agents; Antipsychotic Agents; Bacterial Proteins; Base Sequence; Chlorpromazine; DNA Primers; DNA, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Synergism; Ethidium; Gene Expression; Genes, Bacterial; Humans; Membrane Transport Proteins; Multidrug Resistance-Associated Proteins; Mutation; Oligonucleotide Array Sequence Analysis; Phenothiazines; Salmonella typhimurium; Trans-Activators

2008
Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids.
    Journal of medicinal chemistry, 2009, Oct-22, Volume: 52, Issue:20

    Topics: Animals; Blood-Brain Barrier; Brain; Extracellular Fluid; Humans; Linear Models; Models, Biological; Pharmaceutical Preparations; Pharmacokinetics; Rats; Rats, Sprague-Dawley

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:3

    Topics: Animals; Biological Transport; Brain; Chemical Phenomena; Dialysis; Hydrogen-Ion Concentration; In Vitro Techniques; Lysosomes; Male; Models, Biological; Pharmaceutical Preparations; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Reproducibility of Results; Tissue Distribution

2011