Page last updated: 2024-08-18

thiophenes and 3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic acid

thiophenes has been researched along with 3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic acid in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's4 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Chen, Z; Doyle, T; Finley, A; Salvemini, D1
Bieberich, E; Bryant, L; Chen, C; Chen, Z; Cuzzocrea, S; Doyle, T; Esposito, E; Janes, K; Kamocki, K; Li, C; Little, JW; Neumann, WL; Nicol, G; Obeid, L; Petrache, I; Salvemini, D; Snider, A1
Klöckl, L; Schuchardt, M; Tölle, M; van der Giet, M; Wiedon, A; Zidek, W1
Donahue, RR; Doolen, S; Grachen, CM; Iannitti, T; Shaw, BC; Taylor, BK1

Other Studies

4 other study(ies) available for thiophenes and 3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic acid

ArticleYear
Role for peroxynitrite in sphingosine-1-phosphate-induced hyperalgesia in rats.
    Pain, 2011, Volume: 152, Issue:3

    Topics: Acetophenones; Anilides; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Activation; Enzyme Inhibitors; Hyperalgesia; Lysophospholipids; Male; Metalloporphyrins; NG-Nitroarginine Methyl Ester; Organophosphonates; Oxadiazoles; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Lysosphingolipid; Sphingosine; Thiophenes; Time Factors

2011
The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1.
    The Journal of biological chemistry, 2014, Jul-25, Volume: 289, Issue:30

    Topics: Anilides; Animals; Antineoplastic Agents, Phytogenic; Cytokines; Enzyme Activation; Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Indans; Lysophospholipids; Male; Neuralgia; Organophosphonates; Oxadiazoles; Paclitaxel; Propylene Glycols; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Thiazoles; Thiophenes

2014
Regulation of endothelial nitric oxide synthase activation in endothelial cells by S1P1 and S1P3.
    Biochemical and biophysical research communications, 2016, 08-05, Volume: 476, Issue:4

    Topics: Anilides; beta-Alanine; Endothelial Cells; Enzyme Activation; Gene Knockdown Techniques; Human Umbilical Vein Endothelial Cells; Humans; Nitric Oxide; Nitric Oxide Synthase Type III; Organophosphates; Organophosphonates; Phosphorylation; Phosphoserine; Proto-Oncogene Proteins c-akt; Receptors, Lysosphingolipid; RNA, Small Interfering; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Thiazolidines; Thiophenes

2016
Fingolimod reduces neuropathic pain behaviors in a mouse model of multiple sclerosis by a sphingosine-1 phosphate receptor 1-dependent inhibition of central sensitization in the dorsal horn.
    Pain, 2018, Volume: 159, Issue:2

    Topics: Anilides; Animals; Central Nervous System Sensitization; Disease Models, Animal; eIF-2 Kinase; Female; Fingolimod Hydrochloride; Immunosuppressive Agents; Male; Mice; Mice, Inbred C57BL; Motor Activity; Multiple Sclerosis; Myelin-Oligodendrocyte Glycoprotein; Neuralgia; Organophosphonates; Oxadiazoles; Pain Threshold; Peptide Fragments; Receptors, Lysosphingolipid; Sphingosine-1-Phosphate Receptors; Spinal Cord; Spinal Nerve Roots; Subcellular Fractions; Thiophenes

2018