thioinosine has been researched along with thiazolyl-blue* in 2 studies
2 other study(ies) available for thioinosine and thiazolyl-blue
Article | Year |
---|---|
Inhibitory effect of nonsteroidal anti-inflammatory drugs on adenosine transport in vascular smooth muscle cells.
It is generally accepted that the clinical efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) arises mainly from the inhibition of cyclooxygenase (COX). However, more evidence has suggested that certain pharmacological actions of NSAIDs may be mediated by COX-independent mechanisms. The present study investigated the effects of NSAIDs on adenosine uptake in human aortic smooth muscle cells (HASMCs). Among the NSAIDs tested (all at 100 microM), aspirin, ibuprofen and naproxen had no effect on [(3)H]adenosine uptake. Piroxicam inhibited [(3)H]adenosine uptake by 30%, while etodolac, indomethacin, ketoprofen, mefenamic acid and sulindac inhibited [(3)H]adenosine by 13-18%. Sulindac sulfide, an active metabolite of sulindac, inhibited [(3)H]adenosine uptake and [(3)H]nitrobenzylmercaptopurine ribonucleoside (NBMPR) binding of HASMCs with IC(50) values of 40.67+/-4.82 and 24.19+/-3.76 muM, respectively. Kinetic studies revealed that sulindac sulfide was a competitive inhibitor of adenosine uptake. Using the nucleoside-transporter-deficient PK15NTD cells that stably express equilibrative nucleoside transport (ENT) 1 and ENT2, it was found that the inhibitory effect of sulindac sulfide on ENT1 was greater than that on ENT2. Sulindac sulfide increased the extracellular adenosine level. In addition, it inhibited the proliferation of HASMCs and this anti-proliferative effect could be abolished by adenosine A(2B) receptor antagonist. Our results suggest that sulindac sulfide may exert pharmacological effects through the inhibition of adenosine uptake, which modulates the availability of adenosine in the vicinity of adenosine receptors. Topics: Adenosine; Anti-Inflammatory Agents, Non-Steroidal; Aorta; Cell Proliferation; Cells, Cultured; Coloring Agents; Dose-Response Relationship, Drug; Etodolac; Humans; Indomethacin; Inhibitory Concentration 50; Ketoprofen; Kinetics; Mefenamic Acid; Muscle, Smooth, Vascular; Piroxicam; Sulindac; Temperature; Tetrazolium Salts; Thiazoles; Thioinosine | 2009 |
Adenosine uptake-dependent C6 cell growth inhibition.
In C6 glioma cells, adenine nucleotides, especially AMP, and adenosine inhibited cell proliferation in time- and concentration-dependent manners. alpha,beta-methylene-ADP, an ecto-5'-nucleotidase inhibitor, suppressed the hydrolysis of AMP and reversed the inhibition of cell growth induced by AMP but not by adenosine. Adenosine deaminase eliminated both AMP- and adenosine-mediated growth inhibitions. 5'-N-ethylcarboxamidoadenosine, an adenosine receptor agonist, had little effect on the cell growth. Equilibrative nucleoside transporters, ENT-1 and ENT-2, were expressed in C6 cells by determining their mRNAs. ENT inhibitors, nitrobenzylthioinosine and dipyridamole, suppressed the uptake of [(3)H]adenosine into C6 cells, and attenuated AMP- or adenosine-mediated growth inhibition. Furthermore, an adenosine kinase inhibitor 5-iodotubercidin reversed the growth inhibition induced by AMP and adenosine. When uridine was added in the extracellular space, AMP- or adenosine-induced cell growth inhibition was completely reversed, suggesting that intracellular pyrimidine starvation would be involved in their cytostatic effects. These results indicate that extracellular adenine nucleotides inhibit C6 cell growth via adenosine, which is produced by ecto-nucleotidases including CD73 at the extracellular space and then incorporated into cells by ENT2. Intracellular AMP accumulation by adenosine kinase after adenosine uptake would induce C6 cell growth inhibition through pyrimidine starvation. Topics: 5'-Nucleotidase; Adenine Nucleotides; Adenosine; Adenosine Deaminase; Adenosine Diphosphate; Adenosine Kinase; Adenosine Monophosphate; Animals; Brain Neoplasms; Cell Count; Cell Line, Tumor; Cell Proliferation; Cyclic AMP; Dipyridamole; Equilibrative Nucleoside Transporter 1; Equilibrative-Nucleoside Transporter 2; Glioma; Hydrolysis; Rats; Reverse Transcriptase Polymerase Chain Reaction; Tetrazolium Salts; Thiazoles; Thioinosine; Uridine | 2007 |