thioinosine and 6-thioguanosine

thioinosine has been researched along with 6-thioguanosine* in 3 studies

Other Studies

3 other study(ies) available for thioinosine and 6-thioguanosine

ArticleYear
Testing nucleoside analogues as inhibitors of Bacillus anthracis spore germination in vitro and in macrophage cell culture.
    Antimicrobial agents and chemotherapy, 2010, Volume: 54, Issue:12

    Bacillus anthracis, the etiological agent of anthrax, has a dormant stage in its life cycle known as the endospore. When conditions become favorable, spores germinate and transform into vegetative bacteria. In inhalational anthrax, the most fatal manifestation of the disease, spores enter the organism through the respiratory tract and germinate in phagosomes of alveolar macrophages. Germinated cells can then produce toxins and establish infection. Thus, germination is a crucial step for the initiation of pathogenesis. B. anthracis spore germination is activated by a wide variety of amino acids and purine nucleosides. Inosine and l-alanine are the two most potent nutrient germinants in vitro. Recent studies have shown that germination can be hindered by isomers or structural analogues of germinants. 6-Thioguanosine (6-TG), a guanosine analogue, is able to inhibit germination and prevent B. anthracis toxin-mediated necrosis in murine macrophages. In this study, we screened 46 different nucleoside analogues as activators or inhibitors of B. anthracis spore germination in vitro. These compounds were also tested for their ability to protect the macrophage cell line J774a.1 from B. anthracis cytotoxicity. Structure-activity relationship analysis of activators and inhibitors clarified the binding mechanisms of nucleosides to B. anthracis spores. In contrast, no structure-activity relationships were apparent for compounds that protected macrophages from B. anthracis-mediated killing. However, multiple inhibitors additively protected macrophages from B. anthracis.

    Topics: Alanine; Animals; Bacillus anthracis; Cell Line; Guanosine; Macrophages; Mice; Spores, Bacterial; Structure-Activity Relationship; Thionucleosides

2010
Synthesis of 4-thiouridine, 6-thioinosine, and 6-thioguanosine 3',5'-O-bisphosphates as donor molecules for RNA ligation and their application to the synthesis of photoactivatable TMG-capped U1 snRNA fragments.
    The Journal of organic chemistry, 2000, Aug-25, Volume: 65, Issue:17

    4-Thiouridine, 6-thioguanosine, and 6-thioinosine 3',5'-bisphosphates (9, 20, and 28) were synthesized in good yields by considerably improved methods. In the former two compounds, uridine and 2-N-phenylacetylguanosine were converted via transient O-trimethylsilylation to the corresponding 4- and 6-O-benzenesulfonyl intermediates (2 and 13), which, in turn, were allowed to react with 2-cyanoethanethiol in the presence of N-methylpyrrolidine to give 4-thiouridine (3) and 2-N-phenylacetyl-6-thioguanosine derivatives (14), respectively. In situ dimethoxytritylation of these thionucleoside derivatives gave the 5'-masked products 4 and 15 in high overall yields from 1 and 11. 6-S-(2-Cyanoethyl)-5'-O-(4,4'-dimethoxytrityl)-6-thioinosine (23) was synthesized via substitution of the 5'-O-tritylated 6-chloropurine riboside derivative 22 with 2-cyanoethanethiol. These S-(2-cyanoethyl)thionucleosides were converted to the 2'-O-(tert-butyldimethylsilyl)ribonucleoside 3'-phosphoramidite derivatives 7, 18, and 26 or 3',5'-bisphosphate derivatives 8, 19, and 27. Treatment of 8, 19, and 27 with DBU gave thionucleoside 3',5'-bisphosphate derivatives 9, 20, and 28, which were found to be substrates of T4 RNA ligase. These thionucleoside 3',5'-bisphosphates were examined as donors for ligation with m3(2,2,7) G5'pppAmUmA, i.e., the 5'-terminal tetranucleotide fragment of U1 snRNA, The 4-thiouridine 3',5'-bisphosphate derivative 9 was found to serve as the most active substrate of T4 RNA ligase with a reaction efficiency of 96%.

    Topics: Guanosine; Magnetic Resonance Spectroscopy; Phosphates; Photochemistry; RNA, Small Nuclear; Thioinosine; Thionucleosides; Thiouridine

2000
Sensitive high-performance liquid chromatographic determination of 6-mercaptopurine, 6-thioguanine, 6-mercaptopurine riboside and 6-thioguanosine in biological fluids.
    Journal of chromatography, 1984, Dec-12, Volume: 336, Issue:2

    Topics: Animals; Body Fluids; Chromatography, High Pressure Liquid; Chromatography, Ion Exchange; Goats; Guanosine; Humans; Injections, Intravenous; Inosine; Mercaptopurine; Thioguanine; Thioinosine; Thionucleosides

1984