thiohydantoins and acetic-anhydride

thiohydantoins has been researched along with acetic-anhydride* in 2 studies

Other Studies

2 other study(ies) available for thiohydantoins and acetic-anhydride

ArticleYear
Automated carboxy-terminal sequence analysis of polypeptides containing C-terminal proline.
    Analytical biochemistry, 1995, Jan-20, Volume: 224, Issue:2

    Proteins and peptides can be sequenced from the carboxy-terminus with isothiocyanate reagents to produce amino acid thiohydantoin derivatives. Previous studies in our laboratory have focused on automation of the thiocyanate chemistry using diphenyl phosphoroisothiocyanatidate (DPP-ITC) and pyridine to derivatize the C-terminal amino acid to a thiohydantoin and sodium trimethylsilanolate for specific hydrolysis of the derivatized C-terminal amino acid (Bailey, J. M., Nikfarjam, F., Shenoy, N. S., and Shively, J. E. (1992) Protein Sci. 1, 1622-1633). A major limitation of this approach was the inability to derivatize C-terminal proline. We now describe chemistry based on the DPP-ITC/pyridine reaction which is capable of derivatizing C-terminal proline to a thiohydantoin. The reaction of DPP-ITC/pyridine with C-terminal proline rapidly forms an acyl isothiocyanate which is capable of forming a quaternary amine containing thiohydantoin. Unlike formation of peptidylthiohydantoins with the other 19 commonly occurring amino acids in which cyclization to a thiohydantoin is concomitant with loss of a proton from the amide nitrogen, proline has no amide proton and as a result the newly formed proline thiohydantoin contains an unprotonated ring nitrogen. This cyclic structure if left unprotonated will regenerate C-terminal proline during the cleavage reaction. However, if protonated by the addition of acid, the proline thiohydantoin ring is stabilized and can be readily hydrolyzed to proline thiohydantoin and a shortened peptide by the addition of water vapor or alternatively by sodium or potassium trimethylsilanolate, the reagent normally used for the cleavage reaction. By introducing vaporphase trifluoroacetic acid (TFA) for the protonation reaction and water vapor for the hydrolysis reaction we have been able to automate the chemistry required for derivatization of C-terminal proline.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Acetic Anhydrides; Amino Acids; Chromatography, High Pressure Liquid; Hydrolysis; Isothiocyanates; Magnetic Resonance Spectroscopy; Mass Spectrometry; Peptides; Proline; Pyridines; Sequence Analysis; Spectrophotometry; Thiocyanates; Thiohydantoins

1995
Studies in C-terminal sequencing: new reagents for the synthesis of peptidylthiohydantoins.
    Journal of protein chemistry, 1993, Volume: 12, Issue:2

    In previous studies aimed at the sequencing of peptides and proteins from the carboxy terminus, we have derivatized the C-terminus to a thiohydantoin using acetic anhydride and trimethylsilylisothiocyanate (TMS-ITC) and subsequently hydrolyzed it to form a shortened peptide capable of further degradation and an amino acid thiohydantoin which can be identified by reverse-phase HPLC. Current limitations to this chemistry include an inability to derivatize proline and low yields with asparagine and aspartic acid residues (Bailey et al., 1992). In an attempt to solve some of these problems, we have investigated the use of reagents other than acetic anhydride for the activation of the C-terminal carboxylic acid. These include 2-fluoro-1-methylpyridinium tosylate, 2-chloro-1-methylpyridinium iodide, and acetyl chloride. Addition of TMS-ITC to peptides activated by the 2-halo-pyridinium salts formed the expected peptidylthiohydantoin, but in addition formed a peptide chemically modified at the C-terminus which was blocked to C-terminal sequence analysis. This derivative was not obtained when either acetic anhydride or acetyl chloride was used for activation. Formation of this derivative was found to require the presence of an isothiocyanate reagent in addition to the halo-pyridinium salt. Sodium thiocyanate, TMS-ITC, and a new reagent for thiohydantoin synthesis, tributyltinisothiocyanate (TBSn-ITC), were all found to be capable of forming this analogue. Structural elucidation of the C-terminally modified amino acid revealed it to be a 2-imino-pyridinium analogue. Formation of this C-terminally blocked peptide could be minimized by the use of the 2-chloro-pyridinium reagent, rather than the 2-fluoro reagent, and by performing the reaction at a temperature of 50 degrees C or lower. The 2-halo-pyridinium reagents offer potential advantages over the use of acetic anhydride for activation of the C-terminal carboxylic acid. These include: milder reaction conditions, faster reaction times, and the ability to sequence through C-terminal aspartic acid. The TBSn-ITC reagent was found to be comparable to TMS-ITC for formation of peptidylthiohydantoins.

    Topics: Acetic Anhydrides; Amino Acid Sequence; Enkephalin, Leucine; Indicators and Reagents; Isothiocyanates; Molecular Sequence Data; Pyridinium Compounds; Sequence Analysis; Thiocyanates; Thiohydantoins; Trialkyltin Compounds; Trimethylsilyl Compounds

1993