thioguanine-anhydrous has been researched along with 6-6--dithiodinicotinic-acid* in 1 studies
1 other study(ies) available for thioguanine-anhydrous and 6-6--dithiodinicotinic-acid
Article | Year |
---|---|
Activation of intestinal brush border guanylate cyclase by aromatic disulphide compounds.
Guanylate cyclase in pig intestinal brush border membranes was stimulated by certain aromatic disulphides. The most effective were 6-thioguanine disulphide [(TGS)2], 6-mercaptopurine disulphide, 6,6'-dithiodinicotinic acid, 5,5'-dithiobis-(2-nitrobenzoic acid) and 5-carboxy-2-thiouracil disulphide. (TGS)2 stimulated activity 15-fold when present at 0.1 mM. The optimum concentration for each disulphide was different, and higher concentrations were inhibitory. There was no activation by alkyl disulphides or by N-ethylmaleimide. Activation by 50 microM-(TGS)2 was partially reversed by later addition of 0.1 mM-dithiothreitol, whereas activation by the Escherichia coli heat-stable enterotoxin STa was relatively unaffected. Pretreatment of the membranes with (TGS)2 produced a concentration-dependent inhibition of STa-stimulated activity, while stimulating basal activity, until the activities were equal at 50 microM. Activity was [Mg2+]-dependent, the optimal [Mg2+] progressively increasing as the enzyme was stimulated by (TGS)2, STa and Lubrol PX respectively. However, (TGS)2 pretreatment prevented the shift to higher [Mg2+]optima induced by STa or Lubrol alone. Substitution of Mn2+ for Mg2+ in the reaction elevated basal activity and eliminated by activation (TGS)2. (TGS)2 only inhibited Mn2(+)-dependent activity (both basal and stimulated). The affinity of 125I-STa for its receptor was slightly increased by (TGS)2. We propose that (TGS)2 undergoes thiol-disulphide exchange with at least three different protein thiols of decreasing reactivity. The first is associated with Mg2(+)-dependent activation, the second is associated with a tonic inhibition of activity and the third is associated with the catalytic activity, although probably not at the active site. Topics: Animals; Bacterial Toxins; Disulfides; Dithionitrobenzoic Acid; Enterotoxins; Enzyme Activation; Escherichia coli Proteins; Guanylate Cyclase; Intestines; Male; Microvilli; Nicotinic Acids; Polyethylene Glycols; Sulfhydryl Compounds; Swine; Thioguanine | 1991 |