theophylline has been researched along with fg 9041 in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (33.33) | 18.2507 |
2000's | 3 (50.00) | 29.6817 |
2010's | 1 (16.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Lambert, NA; Teyler, TJ | 1 |
Huguenard, JR; Ulrich, D | 1 |
Fujii, S; Hozumi, Y; Kaneko, K; Kato, H; Kudo, Y; Li, J; Miyakawa, H; Yamazaki, Y | 1 |
Akasu, T; Gu, JW; Hasuo, H; Takeya, M | 1 |
Lindquist, BE; Shuttleworth, CW | 1 |
6 other study(ies) available for theophylline and fg 9041
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus.
Topics: 2-Amino-5-phosphonovalerate; Adenosine; Animals; Evoked Potentials; Hippocampus; In Vitro Techniques; Membrane Potentials; Quinoxalines; Rats; Synapses; Synaptic Transmission; Theophylline | 1991 |
Purinergic inhibition of GABA and glutamate release in the thalamus: implications for thalamic network activity.
Topics: Adenosine; Animals; Bicuculline; Electric Conductivity; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Male; Quinoxalines; Rats; Receptors, Purinergic P1; Synapses; Thalamus; Theophylline | 1995 |
Direct evidence for mutual interactions between perineuronal astrocytes and interneurons in the CA1 region of the rat hippocampus.
Topics: 4-Aminopyridine; Adenosine A1 Receptor Antagonists; Animals; Animals, Newborn; Astrocytes; Cell Communication; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glial Fibrillary Acidic Protein; Hippocampus; Immunohistochemistry; In Vitro Techniques; Interneurons; Lysine; Male; Membrane Potentials; Patch-Clamp Techniques; Potassium Channel Blockers; Quinoxalines; Rats; Tetraethylammonium; Theophylline | 2005 |
Effects of emodin on synaptic transmission in rat hippocampal CA1 pyramidal neurons in vitro.
Topics: Adenosine; Adenosine Deaminase; Animals; Bicuculline; Dose-Response Relationship, Drug; Drug Interactions; Electrophysiology; Emodin; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Hippocampus; In Vitro Techniques; Male; Neural Inhibition; Purinergic P1 Receptor Antagonists; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Synaptic Transmission; Theophylline; Valine | 2005 |
Adenosine receptor activation is responsible for prolonged depression of synaptic transmission after spreading depolarization in brain slices.
Topics: Adenosine; Adenosine A1 Receptor Antagonists; Animals; Biophysics; Brain; CA1 Region, Hippocampal; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; In Vitro Techniques; Mice; Mice, Inbred C57BL; Nerve Fibers; Neural Inhibition; Potassium Chloride; Quinoxalines; Receptors, Purinergic P1; Theophylline; Time Factors; Xanthines | 2012 |