thapsigargin and yessotoxin

thapsigargin has been researched along with yessotoxin* in 2 studies

Other Studies

2 other study(ies) available for thapsigargin and yessotoxin

ArticleYear
Role of yessotoxin in calcium and cAMP-crosstalks in primary and K-562 human lymphocytes: the effect is mediated by anchor kinase A mitochondrial proteins.
    Journal of cellular biochemistry, 2012, Volume: 113, Issue:12

    Yessotoxin (YTX) is a marine polyether toxin previously described as a phosphodiesterase (PDE) activator in fresh human lymphocytes. This toxin induces a decrease of adenosine 3',5'-cyclic monophosphate (cAMP) levels in fresh human lymphocytes in a medium with calcium (Ca(2+) ), whereas the contrary effect has been observed in a Ca(2+) -free medium. In the present article, the effect of YTX in K-562 lymphocytes cell line has been analysed. Surprisingly, results obtained in K-562 cell line are completely opposite than in fresh human lymphocytes, since in K-562 cells YTX induces an increase of cAMP levels. YTX cytotoxicity was also studied in both K-562 cell line and fresh human lymphocytes. Results demonstrate that YTX does not modify fresh human lymphocytes viability, whereas in K-562 cells, YTX has a highly cytotoxic effect. It has been described in a previous study that YTX induces a small cytosolic Ca(2+) increase in fresh human lymphocytes but no effect was observed on Ca(2+) pools depletion in these cells. However, our results show that, in K-562 cells, YTX has no effect on cytosolic Ca(2+) levels in a medium with Ca(2+) and induces an increase on Ca(2+) pools depletion followed by a Ca(2+) influx. As far as Ca(2+) modulation is concerned these results demonstrate that YTX has a clear opposite effect in tumoural and fresh human lymphocytes. In addition, intracellular Ca(2+) reservoirs affected by YTX are different than thapsigargin-sensible pools. Furthermore, YTX-dependent Ca(2+) pools depletion was abolished by cAMP analogue (dibutyryl cAMP), phosphodiesterase-4 (PDE4) inhibitor (rolipram), protein kinase A inhibitor (H89) and oxidative phosphorylation uncoupler carbonyl cyanide p-(trifluoromethoxy) (FCCP) treatments. This evidences the crosstalks between Ca(2+) , YTX and cAMP pathways. Also, results obtain demonstrate that YTX-dependent Ca(2+) influx was only abolished by FCCP pre-treatment, which indicates a link between YTX and mitochondria in K-562 cell line. Cytosolic expression of A-kinase anchor proteins (AKAPs), the proteins which integrates phosphodiesterases (PDEs) and PKA to the mitochondria, was determined in both cell models. On the one hand, in human fresh lymphocytes, YTX increases AKAP149 cytosolic expression. This fact is accompanied with a decrease in cAMP levels, and therefore PDEs activation, which finally leads to cell survival. On the other hand, in tumoural lymphocytes, YTX has an opposite effect since decreases AKAP149 cytos

    Topics: A Kinase Anchor Proteins; Antineoplastic Agents; Calcium; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cell Survival; Culture Media; Cyclic AMP; Cytosol; Enzyme Activation; Humans; Isoquinolines; K562 Cells; Lymphocytes; Mitochondria; Mitochondrial Proteins; Mollusk Venoms; Oxocins; Phosphodiesterase 4 Inhibitors; Rolipram; Sulfonamides; Thapsigargin

2012
Modulation of cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxin.
    Biochemical pharmacology, 2001, Apr-01, Volume: 61, Issue:7

    Yessotoxin (YTX) is a polyether toxin of marine origin that has been classified among the diarrheic shellfish poisoning (DSP) toxins group due to its lipophilic nature. However, unlike other DSP toxins, YTX does not produce diarrhea and its mechanisms of action are unknown. We studied the effect of YTX on the cytosolic calcium levels of freshly isolated human lymphocytes by means of fluorescence imaging microscopy. We showed that YTX produced a calcium influx through nifedipine and SKF 96365 (1-[beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenyl]-1H-imidazole hydrochloride)-sensitive channels. This Ca2+ entry was not affected by the DSP toxin okadaic acid, which inhibits protein phosphatases. In addition, YTX also produced an inhibition of capacitative calcium entry activated by thapsigargin or by preincubation in a Ca2+-free medium. This capacitative calcium entry was not sensitive to nifedipine. Furthermore, the inhibitory effect of YTX was dependent on the time of addition of the toxin. We suggest that YTX may interact with calcium channels in a way similar to that described for other polyether marine compounds such as brevetoxins and maitotoxin, although an involvement of other second messengers is also likely.

    Topics: Biological Transport; Calcium; Cytosol; Enzyme Inhibitors; Ethers, Cyclic; Homeostasis; Humans; In Vitro Techniques; Lymphocytes; Mollusk Venoms; Oxocins; Signal Transduction; Thapsigargin

2001