thapsigargin and sulotroban

thapsigargin has been researched along with sulotroban* in 3 studies

Other Studies

3 other study(ies) available for thapsigargin and sulotroban

ArticleYear
Receptor occupancy regulates Ca2+ entry and intracellular Ca2+ redistribution in activated human platelets.
    The Biochemical journal, 1994, Dec-15, Volume: 304 ( Pt 3)

    Fura-2-loaded human platelets were used to study Ca2+ release from intracellular compartments, as well as Ca2+ influx from the extracellular space. We investigated the response towards the endoperoxide/thromboxane-receptor agonist. U46619, and the inhibitor of the endoplasmic-reticulum Ca(2+)-ATPase, thapsigargin. U46619 dose-dependently depleted intracellular Ca2+ stores, followed by active sequestration of released Ca2+. Ca2+ influx induced by U46619 largely relies on receptor occupancy. Removing the thromboxane analogue from its receptor by using the endoperoxide/thromboxane-receptor antagonist BM 13177 largely blunted U46619-mediated Ca2+ influx. The Ca(2+)-ATPase inhibitor thapsigargin evoked a gradual rise in intracellular Ca2+, which was potentiated by a preceding activation of platelets with the receptor agonist U46619. This agonist-sensitizing effect also depends on receptor occupancy. Removing U46619 from its receptor by addition of the endoperoxide/thromboxane-receptor antagonist BM13177 suppressed the sensitizing effect completely. Furthermore, interrupting downstream receptor signalling events by raising intracellular levels of cyclic nucleotides (cyclic AMP, cyclic GMP) again suppressed the U46619-sensitizing effect on thapsigargin-induced Ca2+ release. This study indicates that the process of Ca2+ release followed by resequestration in response to a platelet agonist by its own is not sufficient to produce the sensitizing effect. Rather, a continuously occupied receptor triggering sustained downstream signalling events seems to be required for sensitization. The presence of a receptor agonist may induce an increased cycling of Ca2+ between the agonist-responsive and the thapsigargin-dischargeable compartment, leading to faster and more intense accumulation of Ca2+ in the cytosolic compartment after inhibition of the Ca(2+) ATPase. Suggestively, receptor occupancy increases the Ca(2+)-releasing potency of thapsigargin by coupling the thapsigargin-sensitive Ca(2+)-storing compartments with an agonist-responsive compartment that exhibits a high leakage rate in stimulated platelets.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Blood Platelets; Calcium; Cyclic AMP; Cyclic GMP; Cytosol; Epoprostenol; Humans; Intracellular Fluid; Nitroprusside; Platelet Activation; Prostaglandin Endoperoxides, Synthetic; Receptors, Thromboxane; Signal Transduction; Sulfonamides; Terpenes; Thapsigargin; Thromboxane A2

1994
Cyclic nucleotides and intracellular-calcium homeostasis in human platelets.
    European journal of biochemistry, 1992, Jul-15, Volume: 207, Issue:2

    The relationship between agonist-sensitive calcium compartments and those discharged by the Ca(2+)-ATPase inhibitor thapsigargin were studied in human platelets. In this context, calcium mobilization from intracellular pools and manganese influx was investigated in relation to the effect of altered cyclic-nucleotide levels. For maximal calcium release from intracellular stores, thapsigargin, compared to a receptor agonist like thrombin, requires the platelet's self-amplification mechanism, known to generate thromboxane A2. With this lipid mediator formed, thapsigargin released calcium and stimulated manganese influx in a manner similar to thrombin. Blocking the thromboxane receptor by addition of sulotroban (BM13.177) or, alternatively, increasing platelet cAMP or cGMP using prostacyclin or sodium nitroprusside, dramatically reduced the ability of thapsigargin to release calcium from intracellular compartments. The same experimental conditions significantly reduced the rate of manganese influx initiated by thapsigargin compared to thrombin. The experiments indicate that thapsigargin-sensitive compartments play only a minor role in inducing manganese influx compared to the receptor-sensitive compartment. Cyclic nucleotides accelerate the redistribution of an agonist-elevated platelet calcium into the thapsigargin-sensitive compartment, from which calcium can be released by inhibition of the Ca(2+)-ATPase. In human platelets, thapsigargin-induced calcium increase and influx were responsible for only part the calcium release resulting from inhibition of the corresponding ATPase; another part results from the indirect effect of thapsigargin acting via thromboxane-A2-receptor activation. Cyclic nucleotides are therefore an interesting regulatory device which can modify the thapsigargin response by not allowing the self-amplification mechanism of platelets to operate.

    Topics: Blood Platelets; Calcium; Cell Compartmentation; Cyclic AMP; Cyclic GMP; Cytosol; Epoprostenol; Homeostasis; Humans; In Vitro Techniques; Manganese; Nitroprusside; Sulfonamides; Terpenes; Thapsigargin; Thrombin

1992
Different calcium pools in human platelets and their role in thromboxane A2 formation.
    The Journal of biological chemistry, 1991, Oct-15, Volume: 266, Issue:29

    Activation of human platelets by diverse receptor-transduced signals is followed by an intracellular calcium increase. Calcium liberation from an inositol 1,4,5-trisphosphate-sensitive compartment is recognized to be one of the prime events, followed by further mechanisms to amplify the signal. Among these, the formation of prostaglandin endoperoxides and thromboxane A2 are part of the self-amplificating activation system. Two inhibitors of intracellular Ca(2+)-ATPases, thapsigargin and 2,5-di-(tert-butyl)-1,4-benzohydroquinone have been reported to deplete the intracellular inositol 1,4,5-trisphosphate-responsive stores. In human platelets with EGTA present, we found that these inhibitors of the microsomal Ca2+ sequestration generate quite different Ca2+ transients due to an inherent cyclooxygenase inhibition by the benzohydroquinone derivative compared to thapsigargin, and, therefore, only one-half of the fura-2 signal is generated. For a maximal calcium release, Ca(2+)-ATPase inhibitors depend on the self-amplification system involving thromboxane formation. Following the thapsigargin-induced [Ca2+]i transient, thrombin was unable to raise [Ca2+]i, indicating that thapsigargin mobilizes calcium from the thrombin-responsive store, as long as the self-amplifying system of platelets is intact. With the thromboxane receptor blocked, thapsigargin releases only one-half of the calcium, and, hence, thrombin was able to release additional calcium. Interestingly, in the converse experiment, thrombin did not prevent a raise of [Ca2+]i by thapsigargin at all, although applying thrombin a second time was without any effect. Therefore, we propose two calcium pools in human platelets: receptor activation transiently releases calcium from an inositol-sensitive pool including the thapsigargin-sensitive compartment, followed by reuptake within minutes. Sequestration occurs into the thapsigargin-sensitive compartment from where it can be released even when the endoperoxide/thromboxane receptor is blocked. Calcium release from both compartments allows the formation of thromboxane B2, but not if only the Ca(2+)-ATPase inhibitor-sensitive pool is emptied. In the presence of a protonophor, a calcium accumulation in the Ca(2+)-ATPase-sensitive pool could be observed.

    Topics: Antioxidants; Blood Platelets; Calcium; Calcium-Transporting ATPases; Fibrinolytic Agents; Humans; Hydroquinones; Nigericin; Platelet Activation; Prostaglandin-Endoperoxide Synthases; Sulfonamides; Terpenes; Thapsigargin; Thrombin; Thromboxane A2; Thromboxane B2

1991