thapsigargin has been researched along with sphingosine-1-phosphate* in 24 studies
24 other study(ies) available for thapsigargin and sphingosine-1-phosphate
Article | Year |
---|---|
Sphingosine-1-phosphate Attenuates Endoplasmic Reticulum Stress-induced Cardiomyocyte Apoptosis Through Sphingosine-1-phosphate Receptor 1.
Endoplasmic reticulum stress (ER stress) is involved in the development and progression of various forms of heart disease and may lead to myocardial apoptosis. Sphingosine-1-phosphate (S1P) possesses cardioprotective properties, including anti-apoptosis. However, little is known about the link between S1P and ER stress-induced myocardial apoptosis. This study investigated the regulatory role of S1P in ER stress-induced apoptosis in cardiomyocytes.. ER stress and myocardial apoptosis were induced by transverse aortic constriction (TAC) or tunicamycin in mice, which were then treated with 2-acetyl-5-tetrahydroxybutyl imidazole (THI) or S1P. AC16 cells were treated with tunicamycin or thapsigargin, or pretreated with S1P, sphingosine-1-phosphate receptor (S1PR) subtype antagonists, S1PR1 agonist, and PI3K and MEK inhibitors. Cardiac function, the level of S1P in plasma and heart, ER stress markers, cell viability, and apoptosis were detected.. S1P reduced the expression of ER stress-related molecules and ER stress-induced myocardial apoptosis in mice subjected to TAC or an injection of tunicamycin. Furthermore, in AC16 cells exposed to thapsigargin or tunicamycin, S1P decreased the expression of ER stress-related molecules, promoting cell viability and survival. Nevertheless, the S1PR1 antagonist abrogated the protection of S1P. Subsequently, in TAC S1PR1 heterozygous (S1PR1. This study is the first to demonstrate that S1P relieves ER stress-induced myocardial apoptosis via S1PR1/AKT and S1PR1/ERK1/2, which are potential therapeutic targets for heart disease. Topics: Animals; Endoplasmic Reticulum Stress; Heart Diseases; Imidazoles; Lysophospholipids; Mice; Mitogen-Activated Protein Kinase Kinases; Myocytes, Cardiac; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Thapsigargin; Tunicamycin | 2022 |
The effect of sphingosine-1-phosphate on colonic smooth muscle contractility: Modulation by TNBS-induced colitis.
Increased levels of circulating sphingosine-1-phosphate (S1P) have been reported in ulcerative colitis. The objective of this study was to examine the effect of S1P on colonic smooth muscle contractility and how is it affected by colitis.. Colonic inflammation was induced by intrarectal administration of trinitrobenzene sulfonic acid. Five days later colon segments were isolated and used for contractility experiments and immunoblotting.. S1P contracted control and inflamed colon segments and the contraction was significantly greater in inflamed colon segments. S1P-induced contraction was mediated by S1PR1 and S1PR2 in control and S1PR2 in inflamed colon segments. S1PR3 did not play a significant role in S1P-induced contractions in control or inflamed colon. S1PR1, S1PR2 and S1PR3 proteins were expressed in colon segments from both groups. The expression of S1PR1 and S1PR2 was significantly enhanced in control and inflamed colon segments, respectively. S1PR3 levels however were not significantly different between the two groups. Nifedipine significantly reduced S1P-induced contraction in control but not inflamed colon segments. Thapsigargin significantly reduced S1P-induced contraction of the inflamed colon. GF 109203X and Y-27632, alone abolished S1P-induced contraction of the control but not inflamed colon segments. Combination of GF 109203X, Y-27632 and thapsigargin abolished S1P-induced contraction of inflamed colon segments.. S1P contracted control colon via S1PR1 and S1PR2 and inflamed colon exclusively via S1PR2. Calcium influx (control) or release (inflamed) and calcium sensitization are involved in S1P-induced contraction. Exacerbated response to S1P in colitic colon segments may explain altered colonic motility reported in patients and experimental models of inflammatory bowel disease. Topics: Animals; Calcium; Colitis, Ulcerative; Colon; Disease Models, Animal; Humans; Inflammation; Lysophospholipids; Muscle Contraction; Muscle, Smooth; Rats; Receptors, Lysosphingolipid; Sphingosine; Sphingosine-1-Phosphate Receptors; Thapsigargin; Trinitrobenzenesulfonic Acid | 2017 |
High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression.
Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages.. Mitochondrial or endoplasmic reticulum-dependent apoptosis was induced by exposure of macrophages to etoposide or thapsigargin/fukoidan, respectively.. Cell death induced by these compounds was inhibited by S1P as inferred from reduced annexin V binding, TUNEL staining, and caspase 3, 9 and 12 activities. S1P induced expression of the inhibitor of apoptosis protein (IAP) family proteins cIAP1, cIAP2 and survivin, but only the inhibitor of survivin expression YM155 and not the cIAP1/2 blocker GDC0152 reversed the inhibitory effect of S1P on apoptosis. Moreover, S1P activated signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2) and the stimulatory effect of S1P on survivin expression and inhibitory effects on apoptosis were attenuated by STAT3 or JAK2 inhibitors, S3I-201 or AG490, respectively. The effects of S1P on STAT3 activation, survivin expression and macrophage apoptosis were emulated by HDL, HDL lipids, and apolipoprotein (apo) M-containing HDL, but not by apoA-I or HDL deprived of S1P or apoM. In addition, JTE013 and CAY10444, S1P receptor 2 and 3 antagonists, respectively, compromised the S1P and HDL capacities to stimulate STAT3 activation and survivin expression, and to inhibit apoptosis.. HDL-associated S1P inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. The suppression of macrophage apoptosis may represent a novel mechanism utilized by HDL to exert its anti-atherogenic effects. Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Cytoprotection; Dose-Response Relationship, Drug; Endoplasmic Reticulum Stress; Etoposide; Inhibitor of Apoptosis Proteins; Janus Kinase 2; Lipoproteins, HDL; Lysophospholipids; Macrophages; Mice; Mitochondria; RAW 264.7 Cells; Repressor Proteins; Signal Transduction; Sphingosine; STAT3 Transcription Factor; Survivin; Thapsigargin; Time Factors | 2017 |
An endoplasmic reticulum stress-initiated sphingolipid metabolite, ceramide-1-phosphate, regulates epithelial innate immunity by stimulating β-defensin production.
Antimicrobial peptides (AMP) are ubiquitous innate immune elements in epithelial tissues. We recently discovered that a signaling lipid, the ceramide metabolite sphingosine-1-phosphate (S1P), regulates production of a major AMP, cathelicidin antimicrobial peptide (CAMP), in response to a subtoxic level of endoplasmic reticulum (ER) stress that can be induced by external perturbants in keratinocytes. We hypothesized that an ER stress-initiated signal could also regulate production of another major class of AMPs: i.e., the human beta-defensins 2 (hBD2) and 3 (hBD3). Keratinocytes stimulated with a pharmacological ER stressor, thapsigargin (Tg), increased hBD2/hBD3 as well as CAMP mRNA expression. While inhibition of sphingosine-1-phosphate production did not alter hBD expression following ER stress, blockade of ceramide-1-phosphate (C1P) suppressed Tg-induced hBD2/hBD3 but not CAMP expression. Exogenous C1P also increased hBD2/hBD3 production, indicating that C1P stimulates hBD expression. We showed further that C1P-induced hBD2/hBD3 expression is regulated by a novel pathway in which C1P stimulates downstream hBD via a cPLA2a→15d-PGJ2→PPARα/PPARβ/δ→Src kinase→STAT1/STAT3 transcriptional mechanism. Finally, conditioned medium from C1P-stimulated keratinocytes showed antimicrobial activity against Staphylococcus aureus. In summary, our present and recent studies discovered two new regulatory mechanisms of key epidermal AMP, hBD2/hBD3 and CAMP. The C1P and S1P pathways both signal to enhance innate immunity in response to ER stress. Topics: Antimicrobial Cationic Peptides; beta-Defensins; Cathelicidins; Cells, Cultured; Ceramides; Culture Media, Conditioned; Endoplasmic Reticulum Stress; Gene Expression Regulation; HeLa Cells; Humans; Immunity, Innate; Keratinocytes; Lysophospholipids; Signal Transduction; Sphingosine; Staphylococcus aureus; Thapsigargin | 2014 |
Actin cytoskeleton regulates stretch-activated Ca2+ influx in human pulmonary microvascular endothelial cells.
During high tidal volume mechanical ventilation in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), regions of the lung are exposed to excessive stretch, causing inflammatory responses and further lung damage. In this study, the effects of mechanical stretch on intracellular Ca(2+) concentration ([Ca(2+)](i)), which regulates a variety of endothelial properties, were investigated in human pulmonary microvascular endothelial cells (HPMVECs). HPMVECs grown on fibronectin-coated silicon chambers were exposed to uniaxial stretching, using a cell-stretching apparatus. After stretching and subsequent unloading, [Ca(2+)](i), as measured by fura-2 fluorescence, was transiently increased in a strain amplitude-dependent manner. The elevation of [Ca(2+)](i) induced by stretch was not evident in the Ca(2+)-free solution and was blocked by Gd(3+), a stretch-activated channel inhibitor, or ruthenium red, a transient receptor potential vanilloid inhibitor. The disruption of actin polymerization with cytochalasin D inhibited the stretch-induced elevation of [Ca(2+)](i). In contrast, increases in [Ca(2+)](i) induced by thapsigargin or thrombin were not affected by cytochalasin D. Increased actin polymerization with sphingosine-1-phosphate or jasplakinolide enhanced the stretch-induced elevation of [Ca(2+)](i). A simple network model of the cytoskeleton was also developed in support of the notion that actin stress fibers are required for efficient force transmission to open stretch-activated Ca(2+) channels. In conclusion, mechanical stretch activates Ca(2+) influx via stretch-activated channels which are tightly regulated by the actin cytoskeleton different from other Ca(2+) influx pathways such as receptor-operated and store-operated Ca(2+) entries in HPMVECs. These results suggest that abnormal Ca(2+) homeostasis because of excessive mechanical stretch during mechanical ventilation may play a role in the progression of ALI/ARDS. Topics: Actins; Calcium; Cells, Cultured; Cytochalasin D; Cytoskeleton; Depsipeptides; Humans; Lung; Lysophospholipids; Microcirculation; Microscopy, Fluorescence; Models, Chemical; Sphingosine; Stress, Mechanical; Thapsigargin | 2010 |
Enhanced Ca2+ storage in sphingosine-1-phosphate lyase-deficient fibroblasts.
Sphingosine-1-phosphate (S1P) regulates cell growth and survival, migration and adhesion in many cell types. S1P is generated by sphingosine kinases (SphKs), and dephosphorylated by phosphatases or cleaved by S1P lyase. Extracellular S1P activates specific G protein-coupled receptors while intracellular S1P can mobilize Ca2+ from thapsigargin-sensitive stores. Here, we have studied Ca2+ signalling in mouse embryonic fibroblasts (MEFs) deficient in S1P lyase. In these cells, S1P and sphingosine concentrations were elevated about 6-fold and 2-fold, respectively, as measured by liquid chromatography/tandem mass spectrometry. Measurements with fura-2-loaded cells in suspension revealed that resting [Ca2+]i was elevated and agonist-induced [Ca2+]i increases were augmented in S1P lyase-deficient MEFs both in the presence and absence of extracellular Ca2+. Importantly, [Ca2+]i increases and Ca2+ mobilization induced by the SERCA inhibitor, thapsigargin, were augmented, indicating enhanced Ca2+ storage in S1P lyase-deficient MEFs. Measurements with single cells expressing the calmodulin-based Ca2+ sensor, cameleon, revealed that at least two cell types could be distinguished in both MEF cell populations, one with a rapid and transient [Ca2+]i increase and the other with a slower and prolonged [Ca2+]i elevation upon stimulation with thapsigargin. The area under the time course of thapsigargin-induced [Ca2+]i increases, reflecting overall Ca2+ release, was significantly increased by more than 50% in both rapidly and slowly responding S1P lyase-deficient cells. It is concluded that elevated concentrations of S1P and/or sphingosine lead to enhanced Ca2+ storage and elevated basal [Ca2+]i. S1P metabolism thus plays a role not only in acute Ca2+ mobilization but also in long-term regulation of Ca2+ homeostasis. Topics: Aldehyde-Lyases; Animals; Calcium; Calcium Signaling; Calmodulin; Cells, Cultured; Enzyme Inhibitors; Fibroblasts; Lysophospholipids; Mice; Sphingosine; Thapsigargin | 2010 |
Sphingosine kinase regulates oxidized low density lipoprotein-mediated calcium oscillations and macrophage survival.
We recently reported that oxidized LDL (oxLDL) induces an oscillatory increase in intracellular calcium ([Ca(2+)](i)) levels in macrophages. Furthermore, we have shown that these [Ca(2+)](i) oscillations mediate oxLDL's ability to inhibit macrophage apoptosis in response to growth factor deprivation. However, the signal transduction pathways by which oxLDL induces [Ca(2+)](i) oscillations have not been elucidated. In this study, we show that these oscillations are mediated in part by intracellular mechanisms, as depleting extracellular Ca(2+) did not completely abolish the effect. Inhibiting sarco-endoplasmic reticulum ATPase (SERCA) completely blocked [Ca(2+)](i) oscillations, suggesting a role for Ca(2+) reuptake by the ER. The addition of oxLDL resulted in an almost immediate activation of sphingosine kinase (SK), which can increase sphingosine-1-phosphate (S1P) levels by phosphorylating sphingosine. Moreover, S1P was shown to be as effective as oxLDL in blocking macrophage apoptosis and producing [Ca(2+)](i) oscillations. This suggests that the mechanism in which oxLDL generates [Ca(2+)](i) oscillations may be 1) activation of SK, 2) SK-mediated increase in S1P levels, 3) S1P-mediated Ca(2+) release from intracellular stores, and 4) SERCA-mediated Ca(2+) reuptake back into the ER. Topics: Animals; Biological Transport; Calcium; Calcium Channel Blockers; Cell Line; Cell Survival; Endoplasmic Reticulum; Enzyme Activation; Extracellular Space; Female; Humans; Lipoproteins, LDL; Lysophosphatidylcholines; Lysophospholipids; Macrophages; Mice; Phosphotransferases (Alcohol Group Acceptor); Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sphingosine; Thapsigargin; Type C Phospholipases | 2010 |
Ca2+ signaling induced by sphingosine 1-phosphate and lysophosphatidic acid in mouse B cells.
Lysophospholipids (LPLs) such as lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are chemotactic for lymphocytes, and increases of in cytosolic [Ca(2+)] signal the regulation of lymphocyte activation and migration. Here, the authors investigated the effects of LPA and S1P on [Ca(2+)](c) in mouse B cell lines (WEHI-231 and Bal-17) and primary B cells isolated from mouse spleen and bone marrow, and focused on the modulation of store-operated Ca(2+) entry (SOCE) by LPLs. In Bal-17 (a mature B cell line) both LPA and S1P induced a transient [Ca(2+)](c) increase via a phospholipase C pathway. In addition, pretreatment with LPLs was found to augment thapsigargin-induced SOCE in Bal-17 cells. However, in WEHI-231 (an immature B cell line) LPLs had no significant effect on [Ca(2+)](c) or SOCE. Furthermore, in freshly isolated splenic B cells (SBCs) and bone marrow B cells (BMBCs), LPLs induced only a small increase in [Ca(2+)](c). Interestingly, however, pretreatment with LPLs markedly increased SOCE in primary B cells, and this augmentation was more prominent in BMBCs than SBCs. The unidirectional influx of Ca(2+) was measured using Ba(2+) as a surrogate ion. Similarly, Ba(2+) influx was also found to be markedly increased by LPLs in SBCs and BMBCs. Summarizing, LPLs were found to strongly augment SOCE-mediated Ca(2+)-signaling in mouse B cells. However, unlike the mature Bal-17 cell line, PLC-dependent Ca(2+) release was insignificant in primary B cells and inWEHI-231. Topics: Animals; B-Lymphocytes; Bone Marrow; Calcium Signaling; Calcium-Transporting ATPases; Cell Culture Techniques; Cell Line; Lipid Metabolism; Lymphocyte Activation; Lymphopoiesis; Lysophospholipids; Mice; Precursor Cells, B-Lymphoid; Sphingosine; Spleen; Thapsigargin; Type C Phospholipases | 2010 |
Diversity of lysophosphatidic acid receptor-mediated intracellular calcium signaling in early cortical neurogenesis.
Lysophosphatidic acid (LPA) is a membrane-derived lysophospholipid that can induce pleomorphic effects in neural progenitor cells (NPCs) from the cerebral cortex, including alterations in ionic conductance. LPA-induced, calcium-mediated conductance changes have been reported; however, the underlying molecular mechanisms have not been determined. We show here that activation of specific cognate receptors accounts for nearly all intracellular calcium responses evoked by LPA in acutely cultured nestin-positive NPCs from the developing mouse cerebral cortex. Fast-onset changes in intracellular calcium levels required release from thapsigargin-sensitive stores by a pertussis toxin-insensitive mechanism. The influx of extracellular calcium through Cd(2+)/Ni(2+)-insensitive influx pathways, approximately one-half of which were Gd(3+) sensitive, contributed to the temporal diversity of responses. Quantitative reverse transcription-PCR revealed the presence of all five known LPA receptors in primary NPCs, with prominent expression of LPA(1), LPA(2), and LPA(4). Combined genetic and pharmacological studies indicated that NPC responses were mediated by LPA(1) (approximately 30% of the cells), LPA(2) (approximately 30%), a combination of receptors on single cells (approximately 30%), and non-LPA(1,2,3) pathways (approximately 10%). LPA responsivity was significantly reduced in more differentiated TuJ1(+) cells within cultures. Calcium transients in a large proportion of LPA-responsive NPCs were also initiated by the closely related signaling lipid S1P (sphingosine-1-phosphate). These data demonstrate for the first time the involvement of LPA receptors in mediating surprisingly diverse NPC calcium responses involving multiple receptor subtypes that function within a single cell. Compared with other known factors, lysophospholipids represent the major activator of calcium signaling identified within NPCs at this early stage in corticogenesis. Topics: Animals; Cadmium Chloride; Calcium; Calcium Signaling; Cells, Cultured; Cerebral Cortex; Dose-Response Relationship, Drug; Embryo, Mammalian; Extracellular Fluid; Female; Gene Expression Regulation, Developmental; Glutamic Acid; Intracellular Signaling Peptides and Proteins; Isoxazoles; Lysophospholipids; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Nerve Tissue Proteins; Neurogenesis; Neurons; Nickel; Organophosphates; Pertussis Toxin; Pituitary Adenylate Cyclase-Activating Polypeptide; Pregnancy; Propionates; Pyridines; RNA, Messenger; Sphingosine; Thapsigargin | 2010 |
Muscarinic receptor regulation of osmosensitive taurine transport in human SH-SY5Y neuroblastoma cells.
The ability of G protein-coupled receptors to regulate osmosensitive uptake of the organic osmolyte, taurine, into human SH-SY5Y neuroblastoma cells has been examined. When monitored under isotonic conditions and in the presence of physiologically relevant taurine concentrations (1-100 microM), taurine influx was mediated exclusively by a Na(+)-dependent, high-affinity (K(m) = 2.5 microM) saturable transport mechanism (V(max) = 0.087 nmol/mg protein/min). Reductions in osmolarity of > 20% (attained under conditions of a constant NaCl concentration) resulted in an inhibition of taurine influx (> 30%) that could be attributed to a reduction in V(max), whereas the K(m) for uptake remained unchanged. Inclusion of the muscarinic cholinergic agonist, oxotremorine-M (Oxo-M), also resulted in an attenuation of taurine influx (EC(50) approximately 0.7 microM). Although Oxo-M-mediated inhibition of taurine uptake could be observed under isotonic conditions (approximately 25-30%), the magnitude of inhibition was significantly enhanced by hypotonicity (approximately 55-60%), a result that also reflected a reduction in the V(max), but not the K(m), for taurine transport. Oxo-M-mediated inhibition of taurine uptake was dependent upon the availability of extracellular Ca(2+) but was independent of protein kinase C activity. In addition to Oxo-M, inclusion of either thrombin or sphingosine 1-phosphate also attenuated volume-dependent taurine uptake. The ability of Oxo-M to inhibit the influx of taurine was attenuated by 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid, an inhibitor of the volume-sensitive organic osmolyte and anion channel. 4-[(2-Butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid also prevented receptor-mediated changes in the efflux and influx of K(+) under hypoosmotic conditions. The results suggest that muscarinic receptor activation can regulate both the volume-dependent efflux and uptake of taurine and that these events may be functionally coupled. Topics: Alanine; Antioxidants; Biological Transport; Calcium; Cell Line, Tumor; Cyclopentanes; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guanidine; Humans; Indans; Lysophospholipids; Muscarinic Agonists; Neuroblastoma; Osmolar Concentration; Oxotremorine; Receptors, Muscarinic; Saline Solution, Hypertonic; Sphingosine; Taurine; Thapsigargin; Thrombin; Tritium | 2009 |
Discrete influx events refill depleted Ca2+ stores in a chick retinal neuron.
The depletion of ER Ca2+ stores, following the release of Ca2+ during intracellular signalling, triggers the Ca2+ entry across the plasma membrane known as store-operated calcium entry (SOCE). We show here that brief, local [Ca2+]i increases (motes) in the thin dendrites of cultured retinal amacrine cells derived from chick embryos represent the Ca2+ entry events of SOCE and are initiated by sphingosine-1-phosphate (S1P), a sphingolipid with multiple cellular signalling roles. Externally applied S1P elicits motes but not through a G protein-coupled membrane receptor. The endogenous precursor to S1P, sphingosine, also elicits motes but its action is suppressed by dimethylsphingosine (DMS), an inhibitor of sphingosine phosphorylation. DMS also suppresses motes induced by store depletion and retards the refilling of depleted stores. These effects are reversed by exogenously applied S1P. In these neurons formation of S1P is a step in the SOCE pathway that promotes Ca2+ entry in the form of motes. Topics: Amacrine Cells; Animals; Calcium; Calcium Channels; Cell Membrane; Cells, Cultured; Chick Embryo; Endoplasmic Reticulum; Enzyme Inhibitors; GTP-Binding Proteins; Ion Channel Gating; Lysophospholipids; Neurotransmitter Agents; Sphingolipids; Sphingosine; Thapsigargin | 2008 |
Agonist-stimulated endothelial nitric oxide synthase activation and vascular relaxation. Role of eNOS phosphorylation at Tyr83.
Tyr83 in endothelial nitric oxide synthase (eNOS) has been identified previously as a site of Src kinase-mediated phosphorylation of eNOS in bovine aortic endothelial cells (BAECs) that is phosphorylated in response to oxidant stress. In the present study, we have used a phospho-specific antibody to show that Tyr83 in eNOS is also phosphorylated in both BAECs and intact blood vessel segments in response to treatment with a variety of different eNOS-activating agonists, including thapsigargin, vascular endothelial growth factor, bradykinin, ATP, sphingosine-1-phosphate, estrogen, angiopoietin, and acetylcholine. Agonist stimulation of eNOS Tyr83 phosphorylation as well as agonist stimulation of endothelial NO release in BAECs is blocked by Src kinase inhibition by either 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP2) or by dominant negative Src. Mutation of Tyr83 to a nonphosphorylatable Phe blocks agonist stimulation of NO release from eNOS-reconstituted eNOS knockdown endothelial cells. Mutation of Tyr83 also attenuates agonist-induced relaxation of eNOS-reconstituted aortic rings from eNOS knockout mice. Phosphorylation of eNOS at Tyr83 thus appears to be a common covalent modification that is induced, not only by oxidant stress but also by other physiologically relevant extracellular signals known to be important in regulation of eNOS activity in vivo. Moreover, our results demonstrate an important role for Src-mediated phosphorylation of eNOS at Tyr83 in agonist stimulation of eNOS activation and vascular relaxation. Topics: Adenosine Triphosphate; Angiopoietins; Animals; Aorta; Bradykinin; Cattle; Chlorocebus aethiops; COS Cells; Endothelial Cells; Enzyme Inhibitors; Estrogens; Humans; Kidney; Lysophospholipids; Male; Nitric Oxide; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Phosphorylation; Rats; Rats, Sprague-Dawley; Sphingosine; src-Family Kinases; Thapsigargin; Tyrosine; Vascular Endothelial Growth Factor A; Vasodilation | 2008 |
Lysophospholipid receptor-mediated calcium signaling in human keratinocytes.
The lysophospholipids, sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), stimulate chemotaxis and induce differentiation of human keratinocytes. As Ca(2+) plays an important role in keratinocyte differentiation, we studied Ca(2+) signaling by S1P and LPA in these cells, known to express mRNA transcripts of the S1P(1-5) and LPA(1-3) receptors, and the receptor subtypes involved in this process. S1P and LPA caused transient increases in intracellular free Ca(2+) concentration ([Ca(2+)](i)), with pEC(50) values of 8.5+/-0.11 and 7.5+/-0.23, respectively. The [Ca(2+)](i) increases are apparently mediated by stimulation of phospholipase C and involve Ca(2+) mobilization from thapsigargin-sensitive stores and subsequent Ca(2+) influx. The LPA-induced [Ca(2+)](i) increases were not inhibited by the LPA(1/3) receptor antagonist, dioctanoylglycerol pyrophosphate. The S1P-induced [Ca(2+)](i) increases were largely inhibited by the putative S1P(3) antagonist, BML-241, and the S1P(1/3) antagonist, VPC23019. The S1P(1)-specific agonist, SEW2871, did not increase [Ca(2+)](i) but stimulated chemotaxis of keratinocytes, which was fully blocked by S1P(1) antisense oligonucleotides. The data indicate that LPA and S1P potently increase [Ca(2+)](i) in human keratinocytes and that the effect of LPA is mediated by LPA(2), whereas that of S1P is mediated at least to a large part by S1P(3). The S1P(1) receptor, without stimulating [Ca(2+)](i) increases, mediates chemotaxis of keratinocytes. Topics: Calcium; Calcium Signaling; Cell Movement; Chemotaxis; Green Fluorescent Proteins; Humans; Keratinocytes; Lysophospholipids; Models, Biological; Receptors, Lysophospholipid; Receptors, Lysosphingolipid; Sphingosine; Thapsigargin; Thiazolidines; Type C Phospholipases | 2008 |
Overexpression of TRPC3 reduces the content of intracellular calcium stores in HEK-293 cells.
The mammalian canonical transient receptor channels (TRPCs) are considered to be candidates for store-operated calcium channels (SOCCs). Many studies have addressed how TRPC3 channels are affected by depletion of intracellular calcium stores. Conflicting results have been shown for TRPC3 regarding its function, and this has been linked to its level of expression in various systems. In the present study, we have investigated how overexpression of TRPC3 interferes with the regulation of intracellular calcium stores. We demonstrate that overexpression of TRPC3 reduces the mobilization of calcium in response to stimulation of the cells with thapsigargin (TG) or the G-protein coupled receptor agonist sphingosine-1-phosphate (S1P). Our results indicate that this is the result of the expression of TRPC3 channels in the endoplasmic reticulum (ER), thus depleting ER calcium stores. OAG evoked calcium entry in cells overexpressing TRPC3, indicating that functional TRPC3 channels were also expressed in the plasma membrane. Taken together, our results show that overexpression of the putative SOCC, TRPC3, actually reduces the calcium content of intracellular stores, but does not enhance agonist-evoked or store-dependent calcium entry. Our results may, in part, explain the conflicting results obtained in previous studies on the actions of TRPC3 channels. Topics: Animals; Calcium; Calcium Channels; Calnexin; Cell Line; Diglycerides; Endoplasmic Reticulum; Humans; Ion Channel Gating; Lysophospholipids; Patch-Clamp Techniques; Recombinant Fusion Proteins; Sphingosine; Thapsigargin; TRPC Cation Channels | 2008 |
Sphingosylphosphorylcholine enhances calcium entry in thyroid FRO cells by a mechanism dependent on protein kinase C.
Several sphingolipid derivatives, including sphingosylphosphorylcholine (SPC), regulate a multitude of biological processes. In the present study we show that both human thyroid cancer cells (FRO cells) and normal human thyroid cells express G protein-coupled receptor 4 (GPR4) and ovarian cancer G protein-coupled receptor 1 (OGR1), putative SPC-specific receptors. In FRO cells SPC evoked a concentration-dependent increase in intracellular free calcium concentration ([Ca2+]i) in a calcium containing, but not in a calcium-free buffer. Sphingosine 1-phosphate (S1P) evoked an increase in [Ca2+]i in both a calcium containing and a calcium-free buffer. The phospholipase C (PLC) inhibitor U 73122 potently attenuated the effect of SPC, suggesting that effects of SPC were mediated by a G protein coupled receptor. Overnight pretreatment of the cells with pertussis toxin did not affect the SPC-evoked response. Interestingly, SPC did not evoke an increase in inositol phosphates, although S1P did so. Furthermore, in cells pretreated with thapsigargin to deplete intracellular calcium stores, SPC still evoked an increase in [Ca2+]i, suggesting that SPC mainly evoked entry of extracellular calcium. When the cells were pretreated with the protein kinase C (PKC) inhibitor GF 109203X, or when the cells were pretreated with PMA for 24 h, the SPC-evoked calcium entry was attenuated. Thus, the SPC-evoked calcium entry was apparently dependent on PKC. In sharp contrast, the increase in [Ca2+]i evoked by S1P was not sensitive to GF 109203X. Furthermore, the calcium entry evoked by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol was not inhibited by GF 109203X. In addition, SPC decreased the incorporation of 3H-thymidine in a concentration-dependent manner in FRO cells. Taken together, SPC may be an important factor regulating thyroid cancer cell function. Topics: Boron Compounds; Calcium; Calcium Signaling; Cells, Cultured; Gadolinium; Gene Expression Regulation; Humans; Lysophospholipids; Phosphorylcholine; Protein Isoforms; Protein Kinase C; Protein Transport; Receptors, G-Protein-Coupled; RNA, Messenger; Sphingosine; Thapsigargin; Thymidine; Thyroid Gland; Tritium | 2006 |
Lysophospholipids elevate [Ca2+]i and trigger exocytosis in bovine chromaffin cells.
Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) are responsible for many physiological functions, including angiogenesis, neuronal survival, and immunity. However, little is known about their effects in modulating the stimulus-secretion coupling in bovine chromaffin cells. The result of PCR showed that at least two receptors (S1P(3) and LPA(1)) were expressed in bovine chromaffin cells. The elevation of [Ca(2+)](i) by S1P was fast and sustaining; but the elevation by LPA was slow and transient. The EC(50) for S1P and LPA in elevating the [Ca(2+)](i) were 0.55+/-0.01 and 0.54+/-0.40microM, respectively. This elevation could be totally blocked by thapsigargin, 2-APB, and U73122. Pertussis toxin pretreatment inhibited about half of the elevation in [Ca(2+)](i) suggesting the involvement of G(i) and other G-proteins. Repetitive [Ca(2+)](i) elevations elicited by S1P, but not LPA, were inhibited by ryanodine. S1P was more effective than LPA in triggering exocytosis as measured by the changes in membrane capacitance. The whole-cell Ca(2+) current was inhibited by both lysophospholipids but Na(+) current was inhibited by S1P only. These results suggest the differential effects of LPA and S1P in releasing Ca(2+) from the intracellular Ca(2+) stores and modulating the stimulus-secretion coupling in bovine chromaffin cells. Topics: Animals; Base Sequence; Calcium; Calcium Channel Blockers; Calcium Signaling; Catecholamines; Cattle; Cell Membrane; Cell Separation; Cells, Cultured; Chromaffin Cells; Dose-Response Relationship, Drug; Electrophysiology; Enzyme Inhibitors; Exocytosis; Inositol 1,4,5-Trisphosphate; Lysophospholipids; Molecular Sequence Data; Reverse Transcriptase Polymerase Chain Reaction; Ryanodine; Sodium Channel Blockers; Sphingosine; Thapsigargin | 2006 |
Modulation of spontaneous transmitter release from the frog neuromuscular junction by interacting intracellular Ca(2+) stores: critical role for nicotinic acid-adenine dinucleotide phosphate (NAADP).
Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a recently described potent intracellular Ca(2+)-mobilizing messenger active in a wide range of diverse cell types. In the present study, we have investigated the interaction of NAADP with other Ca(2+)-mobilizing messengers in the release of transmitter at the frog neuromuscular junction. We show, for the first time, that NAADP enhances neurosecretion in response to inositol 1,4,5-trisphosphate (IP(3)), cADP-ribose (cADPR) and sphingosine 1-phosphate (S1P), but not sphingosylphosphorylcholine. Thapsigargin was without effect on transmitter release in response to NAADP, but blocked the responses to subsequent application of IP(3), cADPR and S1P and their potentiation by NAADP. Asynchronous neurotransmitter release may therefore involve functional coupling of endoplasmic reticulum Ca(2+) stores with distinct Ca(2+) stores targeted by NAADP. Topics: Animals; Calcium; Calcium Signaling; Cyclic ADP-Ribose; Electrophysiology; Enzyme Inhibitors; Inositol 1,4,5-Trisphosphate; Lysophospholipids; Muscles; NADP; Neuromuscular Junction; Neurotransmitter Agents; Phosphorylcholine; Rana pipiens; Sphingosine; Thapsigargin; Wound Healing | 2003 |
Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+ mobilization independently of G-protein-coupled receptors.
Sphingosine-1-phosphate (S1P), the product of sphingosine kinase, activates several widely expressed G-protein-coupled receptors (GPCR). S1P might also play a role as second messenger, but this hypothesis has been challenged by recent findings. Here we demonstrate that intracellular S1P can mobilize Ca(2+) in intact cells independently of S1P-GPCR. Within seconds, S1P generated by the photolysis of caged S1P raised the intracellular free Ca(2+) concentration in HEK-293, SKNMC and HepG2 cells, in which the response to extracellularly applied S1P was either blocked or absent. Ca(2+) transients induced by photolysis of caged S1P were caused by Ca(2+) mobilization from thapsigargin-sensitive stores. These results provide direct evidence for a true intracellular action of S1P. Topics: Calcium; Calcium Signaling; Cell Line; Humans; Intracellular Space; Lysophospholipids; Microscopy, Fluorescence; Organophosphates; Photolysis; Receptors, G-Protein-Coupled; Sphingosine; Thapsigargin | 2003 |
Distinct effects of different calcium-mobilizing agents on cell death in NG108-15 neuroblastoma X glioma cells.
The effects of different calcium-mobilizing agents on cell death were characterized in NG108-15 neuroblastoma x glioma hybrid cells. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) increased the cytosolic Ca(2+) concentration ([Ca(2+)](i)) and caused cell death. Thapsigargin (TG) not only increased the [Ca(2+)](i) and caused cell death but also induced neurite outgrowth via activation of phospholipase A(2) and cytochrome P450 epoxygenase. In contrast, bradykinin increased the [Ca(2+)](i), but had no effect on cell morphology or cell death. Cell death occurred by two different mechanisms, one of which was caspase-3-dependent and the other caspase-3-independent. Caspase-3 activation was Ca(2+)-dependent, whereas neurite outgrowth was Ca(2+)-independent. TG- or FCCP-induced caspase-3 activation occurred at the same time, but the cell death induced by TG was delayed. TG treatment did not enhance the generation of nitric oxide or cAMP or secretion of glial-derived neurotrophic factor or neurotrophin-3, but activated sphingosine kinase. Furthermore, inhibition of sphingosine kinase accelerated TG-induced cell death, and exogenous sphingosine 1-phosphate (S1P) protected cells from FCCP-induced cell death by about 60%. These results indicate that, in these cells, depletion of intracellular nonmitochondrial or mitochondrial Ca(2+) stores causes cell death, that TG activates phospholipase A(2) and sphingosine kinase, and that arachidonic acid induces neurite outgrowth, whereas S1P delays cell death. Topics: Animals; Apoptosis; Arachidonic Acid; Bradykinin; Calcium; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Ionophores; Lysophospholipids; Neurites; Rats; Sphingosine; Thapsigargin; Tumor Cells, Cultured | 2002 |
Increased tyrosine kinase activity but not calcium mobilization is required for ceramide-induced apoptosis.
The insulin-like growth factors (IGFs) are capable of blocking apoptosis in many cell lines in vitro, potentially via activation of the IGF-I receptor (IGF-IR). We have previously shown that lower doses of the sphingolipid analogue C2-ceramide are required to induce apoptosis in IGF-IR-minus vs -positive murine fibroblasts, indicating a protective feedback loop in the latter and corroborating evidence that the IGF-IR functions as a survival receptor [1, 2]. Since, unexpectedly, C2-ceramide was capable of activating MAP kinase, phosphorylating the IGF-I receptor, and promoting entry into the G2 phase of the cell cycle, we wished to further determine the mechanisms involved. Using IGF-IR-positive fibroblasts we demonstrate here for the first time that ceramide is capable of activating a tyrosine kinase which acts at the level of the IGF-IR to increase cell death. We also demonstrate that in the presence of sodium orthovanadate, ceramide-induced death is increased, and the phosphorylation of a 75-kDa protein which associates with the IGF-I receptor is enhanced. Although the identity of this protein is not known, we speculate that it may link into the Raf kinase signaling pathway; indeed, inhibitors of MEKK reduce ceramide-induced apoptosis, thus substantiating this theory [1, 2]. Although calcium mobilization did cause apoptosis in these cells, it was not required as a mediator of ceramide-induced apoptosis. Finally, the potential hydrolysis of ceramide to sphingosine-1-phosphate was not the cause of increased MAP kinase activation, substantiating the role of an IGF-IR interacting tyrosine kinase, which may be involved in apoptosis. Topics: Animals; Apoptosis; Calcimycin; Calcium; Cell Line; Ceramides; Dose-Response Relationship, Drug; Egtazic Acid; Enzyme Activation; Fibroblasts; Genistein; Insulin; Insulin-Like Growth Factor I; Lysophospholipids; Mice; Phosphoric Monoester Hydrolases; Phosphorylation; Phosphotyrosine; Protein-Tyrosine Kinases; Receptor, IGF Type 1; Signal Transduction; Sphingosine; Thapsigargin; Vanadates | 1999 |
Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes.
In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl- currents by acting through membrane-bound receptors. External application of 50 microM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-microM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl- currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl- currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xbeta), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xbeta, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein alpha subunits that were identified in Xenopus laevis; G(q)alpha, G11alpha, G0alpha, and G(i1)alpha. Among AS-ODNs against the G alphas tested, AS-G(q)alpha and AS-G(i1)alpha to S1P and AS-G(q)alpha and AS-G11alpha to LPA specifically reduced current responses, respectively, to about 20-30% of controls. These results demonstrate that LPA and S1P, although they have similar structural features, release intracellular Ca2+ from the IP3-sensitive pool, use different components in their signal transduction pathways in Xenopus oocytes. Topics: Animals; Antisense Elements (Genetics); Calcium; Chelating Agents; Chlorides; Cyclooxygenase Inhibitors; Dose-Response Relationship, Drug; Egtazic Acid; Enzyme Inhibitors; Estrenes; Female; GTP-Binding Protein alpha Subunits, Gi-Go; GTP-Binding Protein alpha Subunits, Gs; Inositol 1,4,5-Trisphosphate; Isoenzymes; Lysophospholipids; Niflumic Acid; Oligonucleotide Probes; Oocytes; Patch-Clamp Techniques; Periodicity; Phospholipase C beta; Pyrrolidinones; Receptors, Cell Surface; Receptors, G-Protein-Coupled; Receptors, Lysophospholipid; RNA, Messenger; Signal Transduction; Sphingosine; Thapsigargin; Type C Phospholipases; Xenopus laevis | 1998 |
Sphingosylphosphorylcholine and sphingosine-1-phosphate mobilize cytosolic calcium through different mechanisms in human airway epithelial cells.
The sphingosine derivatives sphingosylphosphorylcholine (SPC) and sphingosine-1-phosphate (S1P) caused a similar elevation of the intracellular Ca2+ concentration ([Ca2+]i) in an immortalized airway epithelial cell line (CFNP9o-) incubated in Ca(2+)-free medium. The maximal effect was obtained with 2 microM SPC and 0.1 microM S1P and was sensitive to pre-incubation with pertussis toxin, indicating the involvement of a Gi/G(o) type of G protein. In Ca2+ containing medium, [Ca2+]i elevation by SPC was significantly higher than that by S1P, due to the fact that SPC was able to stimulate Mn2+ entry, whereas S1P was ineffective. SPC, but not S1P, caused a dose-dependent production of total inositol phosphates. Conversely, S1P, but not SPC, increased the level of phosphatidic acid. These findings suggest the presence of two distinct receptors, specific for SPC and S1P, respectively. Depletion of intracellular Ca2+ stores by SPC makes cells unable to respond to a subsequent addition of S1P. Conversely, cells do respond to SPC after a challenge with S1P, suggesting that the two receptors likely share one or more intracellular signalling component(s). Topics: Calcium; Cells, Cultured; Cytosol; Dose-Response Relationship, Drug; Epithelial Cells; GTP-Binding Proteins; Histamine; Humans; Inositol Phosphates; Lysophospholipids; Magnesium; Nasal Cavity; Palmitic Acid; Pertussis Toxin; Phosphatidic Acids; Phosphorylcholine; Sphingosine; Staurosporine; Thapsigargin; Time Factors; Virulence Factors, Bordetella | 1998 |
Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-kappa B in U937 cells.
Sphingosine-1-phosphate (SPP), a metabolite of sphingolipids, has been implicated as a second messenger in cell growth regulation and signal transduction via calcium mobilization from internal stores. This study shows that SPP mobilizes intracellular calcium in U937 cells and demonstrates for the first time the ability of SPP to activate the transcription factor NF-kappa B in these cells. Furthermore, calcium release from the internal stores by thapsigargin (TG), an inhibitor of the endoplasmic reticulum Ca2+ pump, was associated with activation of NF-kappa B. Moreover, we have shown that while an intracellular calcium chelator BAPTA/AM was able to inhibit both SPP- and TG-induced NF-kappa B activation, it had no effect on TNF-induced NF-kappa B activation. In addition, SPP-induced NF-kappa B activation was blocked both by cyclosporin A, known to inhibit calcineurin phosphatase activity, and by the antioxidant butylated hydroxyanisole. These observations suggest that intracellular calcium mobilization is required for SPP-induced NF-kappa B activation, which may involve calcineurin- and redox-dependent mechanisms. Topics: Antioxidants; Butylated Hydroxyanisole; Calcium; Chelating Agents; Cyclosporine; DNA Probes; Egtazic Acid; Electrophoresis, Polyacrylamide Gel; Enzyme Inhibitors; Fluorescent Dyes; Genes, Reporter; Humans; Indoles; Leukemia, Myeloid; Luciferases; Lysophospholipids; NF-kappa B; Sphingolipids; Sphingosine; Thapsigargin; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 1997 |
Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway.
Sphingosine-1-phosphate, a metabolite of sphingolipids which has previously been shown to stimulate DNA synthesis and cell division in quiescent cultures of Swiss 3T3 fibroblasts (Zhang, H., Desai, N. N., Olivera, A., Seki, T., Brooker, G., and Spiegel, S. (1991) J. Cell Biol. 114, 155-167), induced a transient increase in intracellular free calcium independent of extracellular calcium. The increase in calcium was completely abolished when intracellular calcium pools were depleted with thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase. The dose-response for calcium release induced by sphingosine-1-phosphate correlated closely with the concentration required for stimulation of DNA synthesis. The magnitude of the calcium response decreased with successive challenges, although sphingosine-1-phosphate did not attenuate the responses to either bradykinin or ionomycin. Conversely, prior stimulation of the cells with bradykinin had no effect on the sphingosine-1-phosphate-induced calcium signal. Although sphingosine-1-phosphate increased inositol (1,4,5)-trisphosphate levels, complete inhibition of inositol phosphate formation by pretreatment with 12-O-tetradecanoylphorbol-13-acetate did not block sphingosine-1-phosphate-mediated calcium responses. Moreover, in permeabilized cells, heparin, an inositol (1,4,5)-trisphosphate antagonist, blocked Ca2+ release induced by inositol (1,4,5)-trisphosphate, but did not significantly alter the Ca2+ release induced by sphingosine-1-phosphate. Sphingosine-1-phosphate did not stimulate the release of arachidonic acid, another signaling molecule known to elevate [Ca2+]i without inositol lipid turnover or calcium influx. Our data suggest that sphingosine-1-phosphate mobilizes Ca2+ from internal stores primarily through a mechanism independent of inositol lipid hydrolysis and arachidonic acid release and that sphingolipid metabolism may be important in calcium homeostasis. Topics: 3T3 Cells; Animals; Arachidonic Acid; Bradykinin; Calcium; Calcium-Transporting ATPases; Cytosol; DNA; Egtazic Acid; Inositol; Inositol 1,4,5-Trisphosphate; Inositol Phosphates; Ionomycin; Kinetics; Lysophospholipids; Mice; Phorbol Esters; Second Messenger Systems; Sphingosine; Terpenes; Tetradecanoylphorbol Acetate; Thapsigargin; Time Factors | 1994 |