thapsigargin has been researched along with miglustat* in 2 studies
2 other study(ies) available for thapsigargin and miglustat
Article | Year |
---|---|
SERCA2 dysfunction in Darier disease causes endoplasmic reticulum stress and impaired cell-to-cell adhesion strength: rescue by Miglustat.
Darier disease (DD) is a severe dominant genetic skin disorder characterized by the loss of cell-to-cell adhesion and abnormal keratinization. The defective gene, ATP2A2, encodes sarco/endoplasmic reticulum (ER) Ca2+ -ATPase isoform 2 (SERCA2), a Ca2+ -ATPase pump of the ER. Here we show that Darier keratinocytes (DKs) display biochemical and morphological hallmarks of constitutive ER stress with increased sensitivity to ER stressors. Desmosome and adherens junctions (AJs) displayed features of immature adhesion complexes: expression of desmosomal cadherins (desmoglein 3 (Dsg3) and desmocollin 3 (Dsc3)) and desmoplakin was impaired at the plasma membrane, as well as E-cadherin, β-, α-, and p120-catenin staining. Dsg3, Dsc3, and E-cadherin showed perinuclear staining and co-immunostaining with ER markers, indicative of ER retention. Consistent with these abnormalities, intercellular adhesion strength was reduced as shown by a dispase mechanical dissociation assay. Exposure of normal keratinocytes to the SERCA2 inhibitor thapsigargin recapitulated these abnormalities, supporting the role of loss of SERCA2 function in impaired desmosome and AJ formation. Remarkably, treatment of DKs with the orphan drug Miglustat, a pharmacological chaperone, restored mature AJ and desmosome formation, and improved adhesion strength. These results point to an important contribution of ER stress in DD pathogenesis and provide the basis for future clinical evaluation of Miglustat in Darier patients. Topics: 1-Deoxynojirimycin; Adherens Junctions; beta Catenin; Cadherins; Calcium; Cell Adhesion; Cells, Cultured; Darier Disease; Desmosomes; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Female; Humans; Keratinocytes; Male; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Thapsigargin | 2014 |
Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin.
Gangliosides are found at high levels in neuronal tissues where they play a variety of important functions. In the gangliosidoses, gangliosides accumulate because of defective activity of the lysosomal proteins responsible for their degradation, usually resulting in a rapidly progressive neurodegenerative disease. However, the molecular mechanism(s) leading from ganglioside accumulation to neurodegeneration is not known. We now examine the effect of ganglioside GM2 accumulation in a mouse model of Sandhoff disease (one of the GM2 gangliosidoses), the Hexb-/- mouse. Microsomes from Hexb-/- mouse brain showed a significant reduction in the rate of Ca2+-uptake via the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), which was prevented by feeding Hexb-/- mice with N-butyldeoxynojirimycin (NB-DNJ), an inhibitor of glycolipid synthesis that reduces GM2 storage. Changes in SERCA activity were not due to transcriptional regulation but rather because of a decrease in Vmax. Moreover, exogenously added GM2 had a similar effect on SERCA activity. The functional significance of these findings was established by the enhanced sensitivity of neurons cultured from embryonic Hexb-/- mice to cell death induced by thapsigargin, a specific SERCA inhibitor, and by the enhanced sensitivity of Hexb-/- microsomes to calcium-induced calcium release. This study suggests a mechanistic link among GM2 accumulation, reduced SERCA activity, and neuronal cell death, which may be of significance for delineating the neuropathophysiology of Sandhoff disease. Topics: 1-Deoxynojirimycin; Adenosine Triphosphate; Animals; Blotting, Western; Brain; Calcium; Calcium-Transporting ATPases; Cell Death; Disease Models, Animal; Dose-Response Relationship, Drug; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Enzyme Inhibitors; G(M2) Ganglioside; Gangliosides; Genotype; Glycolipids; Hippocampus; Kinetics; Lipid Metabolism; Mice; Mice, Transgenic; Microsomes; Neurons; Reverse Transcriptase Polymerase Chain Reaction; Sandhoff Disease; Sarcoplasmic Reticulum; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Spectrophotometry; Thapsigargin; Time Factors | 2003 |