thapsigargin has been researched along with linsidomine* in 6 studies
6 other study(ies) available for thapsigargin and linsidomine
Article | Year |
---|---|
Differential effects of the peroxynitrite donor, SIN-1, on atrial and ventricular myocyte electrophysiology.
Oxidative stress has been implicated in the pathogenesis of heart failure and atrial fibrillation and can result in increased peroxynitrite production in the myocardium. Atrial and ventricular canine cardiac myocytes were superfused with 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1), a peroxynitrite donor, to evaluate the acute electrophysiologic effects of peroxynitrite. Perforated whole-cell patch clamp techniques were used to record action potentials. SIN-1 (200 µM) increased the action potential duration (APD) in atrial and ventricular myocytes; however, in the atria, APD prolongation was rate independent, whereas in the ventricle APD, prolongation was rate dependent. In addition to prolongation of the action potential, beat-to-beat variability of repolarization was significantly increased in ventricular but not in atrial myocytes. We examined the contribution of intracellular calcium cycling to the effects of SIN-1 by treating myocytes with the SERCA blocker, thapsigargin (5-10 µM). Inhibition of calcium cycling prevented APD prolongation in the atrial and ventricular myocytes, and prevented the SIN-1-induced increase in ventricular beat-to-beat APD variability. Collectively, these data demonstrate that peroxynitrite affects atrial and ventricular electrophysiology differentially. A detailed understanding of oxidative modulation of electrophysiology in specific chambers is critical to optimize therapeutic approaches for cardiac diseases. Topics: Action Potentials; Animals; Atrial Function; Dogs; Enzyme Inhibitors; Female; Male; Molsidomine; Myocytes, Cardiac; Nitric Oxide Donors; Thapsigargin; Ventricular Function | 2013 |
Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling.
1. Nitric oxide (NO) is a key modulator of cellular Ca(2+) signalling and a determinant of mitochondrial function. Here, we demonstrate that NO governs capacitative Ca(2+) entry (CCE) into HEK293 cells by impairment of mitochondrial Ca(2+) handling. 2. Authentic NO as well as the NO donors 1-[2-(carboxylato)pyrrolidin-1-yl]diazem-1-ium-1,2-diolate (ProliNO) and 2-(N,N-diethylamino)-diazenolate-2-oxide (DEANO) suppressed CCE activated by thapsigargin (TG)-induced store depletion. Threshold concentrations for inhibition of CCE by ProliNO and DEANO were 0.3 and 1 micro M, respectively. 3. NO-induced inhibition of CCE was not mimicked by peroxynitrite (100 micro M), the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1, 100 micro M) or 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 1 mM). In addition, the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a] quinoxalin-1-one (ODQ, 30 micro M) failed to antagonize the inhibitory action of NO on CCE. 4. DEANO (1-10 micro M) suppressed mitochondrial respiration as evident from inhibition of cellular oxygen consumption. Experiments using fluorescent dyes to monitor mitochondrial membrane potential and mitochondrial Ca(2+) levels, respectively, indicated that DEANO (10 micro M) depolarized mitochondria and suppressed mitochondrial Ca(2+) sequestration. The inhibitory effect of DEANO on Ca(2+) uptake into mitochondria was confirmed by recording mitochondrial Ca(2+) during agonist stimulation in HEK293 cells expressing ratiometric-pericam in mitochondria. 5. DEANO (10 micro M) failed to inhibit Ba(2+) entry into TG-stimulated cells when extracellular Ca(2+) was buffered below 1 micro M, while clear inhibition of Ba(2+) entry into store depleted cells was observed when extracellular Ca(2+) levels were above 10 micro M. Moreover, buffering of intracellular Ca(2+) by use of N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)] bis [N-[25-[(acetyloxy) methoxy]-2-oxoethyl]]-, bis[(acetyloxy)methyl] ester (BAPTA/AM) eliminated inhibition of CCE by NO, indicating that the observed inhibitory effects are based on an intracellular, Ca(2+) dependent-regulatory process. 6. Our data demonstrate that NO effectively inhibits CCE cells by cGMP-independent suppression of mitochondrial function. We suggest disruption of local Ca(2+) handling by mitochondria as a key mechanism of NO induced suppression of CCE. Topics: Barium; Calcium; Cell Line; Cyclic GMP; Diethylamines; Dose-Response Relationship, Drug; Humans; Intracellular Membranes; Membrane Potentials; Mitochondria; Molsidomine; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Oxadiazoles; Oxygen Consumption; Peroxynitrous Acid; Quinoxalines; Thapsigargin; Time Factors | 2002 |
Influence of SIN-1 on platelet Ca2+ handling in patients with suspected coronary artery disease: ex vivo and in vitro studies.
The 3-morpholinosydnonimine (SIN-1) generates both nitric oxide (NO) and superoxide anion (O2-). It elicits dose-dependent vasodilation in vivo, in spite of the opposite effects of its breakdown products on vascular tone and platelet aggregation. This study was designed to investigate the influence of intravenous SIN-1 injection on platelet Ca2+ handling in patients undergoing coronary angiography. SIN-1 administration reduced cytosolic [Ca2+] in unstimulated platelets by decreasing Ca2+ influx. It attenuated Ca2+ mobilization from internal stores evoked by thrombin or thapsigargin. In vitro studies were used as an approach to investigate how simultaneous productions of NO and O2- from SIN-1 modify thrombin- or thapsigargin-induced platelet Ca2+ mobilization. Superoxide dismutase, the O2- scavenger, enhanced the capacity of SIN-1 to inhibit Ca2+ mobilization but catalase had no effect. This suggests that the effects of SIN-1 on platelet Ca2+ handling resemble those of NO, but are modulated by simultaneous O2- release, independently of H2O2 formation. Topics: Angina Pectoris; Aspirin; Biological Transport; Blood Platelets; Calcium; Calcium Signaling; Catalase; Coronary Angiography; Female; Humans; Injections, Intravenous; Male; Middle Aged; Molsidomine; Nitric Oxide Donors; Platelet Aggregation Inhibitors; Superoxide Dismutase; Superoxides; Thapsigargin; Thrombin | 2000 |
Role of sarcoplasmic reticulum in the myorelaxant activity of nitric oxide donors in guinea pig gastric fundus.
The relaxant effect of two nitric oxide (NO) donors: sodium nitroprusside and 3-morpholino-sydnonimine (SIN-1) on circular smooth muscle strips isolated from guinea pig gastric fundus was studied with the view to elucidating the mechanism, which underlies the NO-induced relaxation of this tissue. Both sodium nitroprusside (10(-9)-10(-5) M) and SIN-1 (10(-9)-10(-4) M) suppressed the spontaneous fundus tone and hyperpolarized the muscle cells by about 5 mV. They antagonized the acetylcholine (10(-6) M)-induced tone and exerted their relaxant effects even when Ca2+ influx into the cells was triggered through the Na+/Ca2+ exchanger. Sodium nitroprusside and SIN-1 antagonized the contraction induced by cyclopiazonic acid (10(-5) M), a specific inhibitor of the sarcoplasmic reticulum Ca2+-ATPase. In the presence of high concentrations of sodium nitroprusside or SIN-1, cyclopiazonic acid (10(-5) M) exerted only a slight if any contractile effect. After the complete relaxation induced by sodium nitroprusside or SIN-1, the K+-channel blockers, tetraethylammonium, apamin and charybdotoxin, as well as the Ca2+ ionophore, A 23187, induced high-amplitude contractions, suggesting that the Ca2+ sensitivity of the contractile myofilaments was not affected. The results suggest that NO, released from NO donors increases the sarcoplasmic reticulum Ca2+ uptake thereby enhancing the vectorial sarcoplasmic reticulum Ca2+ release toward the plasmalemma to elicit membrane hyperpolarization and relaxation in guinea pig gastric fundus. Topics: Acetylcholine; Animals; Calcimycin; Calcium; Enzyme Inhibitors; Gastric Fundus; Guinea Pigs; Indoles; Ionophores; Male; Membrane Potentials; Molsidomine; Muscle Relaxation; Muscle Tonus; Muscle, Smooth; Nitric Oxide Donors; Nitroprusside; Potassium Channel Blockers; Sarcoplasmic Reticulum; Sodium-Calcium Exchanger; Thapsigargin; Vasodilator Agents | 1998 |
The role of sarcoplasmic reticulum and sarcoplasmic reticulum Ca2+-ATPase in the smooth muscle tone of the cat gastric fundus.
Circular smooth muscle strips isolated from cat gastric fundus were studied in order to understand whether the sarcoplasmic reticulum (SR) and SR Ca2+-ATPase could play a role in the regulation of the muscle tone. Cyclopiazonic acid (CPA), a specific inhibitor of SR Ca2+-ATPase, caused a significant and sustained increase in muscle tone, depending on the presence of extracellular Ca2+. Nifedipine and cinnarizin only partially suppressed the CPA-induced tonic contraction. Bay K 8644 antagonized the relaxant effect of nifedipine in CPA-contracted fundus. Nitric-oxide-releasing agents sodium nitroprusside and 3-morpholino-sydnonimine completely suppressed the CPA-induced tonic contraction. The blockers of Ca2+-activated K+ channels, tetraethylammonium, charybdotoxin and/or apamin, decreased the contractile effect of CPA. Vanadate increased the tone but did not change significantly the effect of CPA. CPA exerted its contractile effect even when Ca2+ influx was triggered through the Na+/Ca2+ exchanger and the other Ca2+ entry pathways were blocked. Thapsigargin, another specific SR Ca2+-ATPase inhibitor, also increased the muscle tone. The effect of thapsigargin was completely suppressed by sodium nitroprusside and 3-morpholino-sydnonimine and partially by nifedipine. In conclusion, under conditions when the SR Ca2+-ATPase is inhibited, the tissue develops a strong tonic contraction and a large part of this is mediated by Ca2+ influx presumably via nifedipine-sensitive Ca2+ channels. This study suggests the important role of SR Ca2+-ATPase in the modulation of the muscle tone and the function of SR as a "buffer barrier" to Ca2+ entry in the cat gastric fundus smooth muscle. Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Apamin; Calcium Channel Agonists; Calcium Channel Blockers; Calcium-Transporting ATPases; Cats; Cinnarizine; Enzyme Inhibitors; Gastric Fundus; In Vitro Techniques; Indoles; Male; Molsidomine; Muscle Contraction; Muscle, Smooth; Nifedipine; Nitroprusside; Potassium Channel Blockers; Sarcoplasmic Reticulum; Thapsigargin | 1996 |
Effects of cGMP on calcium handling in ATP-stimulated rat resistance arteries.
The mechanisms by which guanosine 3',5'-cyclic monophosphate (cGMP) modulates the contraction induced by ATP were investigated in small mesenteric resistance arteries of the rat. The nitric oxide donors 3-morpholinosydnonimine (SIN-1, 10 microM) and sodium nitroprusside (SNP, 10 microM) increased cGMP but not adenosine 3',5'-cyclic monophosphate (cAMP) content of the tissue. SIN-1, SNP, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 100 microM) inhibited the myosin light chain phosphorylation and the contractile response to ATP. Both effects were completely reversed by the selective inhibitor of cGMP protein kinase, Rp-8-bromoguanosine 3',5'-cyclic monophosphorothioate (30 microM). The sensitivity to Ca2+ of arteries permeabilized with Staphylococcus aureus alpha-toxin (4,000 hemolytic units/ml) was not affected by 8-BrcGMP. The two nitric oxide donors and 8-BrcGMP decreased the rise in intracellular Ca2+ induced by ATP. The vasodilator agents abolished the contractile response to the exogenous calcium in vessels that were exposed to 3 mM ATP after depletion of intracellular Ca2+ stores. Thapsigargin (1 microM), an inhibitor of the sarcoplasmic reticulum Ca(2+)-adenosinetriphosphatase, reversed the inhibitory effect of the vasodilator agents when the contraction induced by ATP was elicited in the presence of the Ca2+ entry blocker nitrendipine (1 microM) or in Ca(2+)-free medium. These results show that cGMP inhibits ATP-induced contraction by decreasing intracellular Ca2+ concentration in small resistance arteries. They indicate that this effect results from decreased Ca2+ influx and enhanced Ca2+ sequestration through a thapsigargin-sensitive pump via activation of a cGMP protein kinase. Topics: Adenosine Triphosphate; Animals; Calcium; Calcium-Transporting ATPases; Cyclic AMP; Cyclic GMP; In Vitro Techniques; Male; Mesenteric Arteries; Molsidomine; Myosins; Nitrendipine; Nitroprusside; Phosphorylation; Rats; Rats, Wistar; Terpenes; Thapsigargin; Vascular Resistance; Vasoconstriction | 1995 |