thapsigargin has been researched along with gingerol* in 4 studies
4 other study(ies) available for thapsigargin and gingerol
Article | Year |
---|---|
Stromal Interaction Molecule 1 rescues store-operated calcium entry and protects NG115-401L cells against cell death induced by endoplasmic reticulum and mitochondrial oxidative stress.
In this study we sought to investigate the hypothesis that expression of the Stromal Interaction Molecule 1 (STIM1) could provide protection against cell death induced by ER and oxidative stress. STIM1 performs an essential role in regulating store operated calcium entry (SOCE) and thereby provides an important route for replenishment of endoplasmic reticulum (ER) Ca(2+) stores. We used NG115-401L as a model neuronal cell phenotype with a predicted high susceptibility to ER stress due to SOCE deficiency and the absence of STIM1 expression. We show that STIM1 rescue vigorously re-establishes SOCE responses inducible by sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) blockers and Ca(2+)- linked receptors, producing a useful cell line with a simple STIM1/SOCE on/off switch. Surprisingly, we find that expressing STIM1 in NG115-401L cells appears to not have a significant impact on stored ER Ca(2+) levels. Yet, even though we find no evidence for an influence on ER Ca(2+) levels, we observed that provision of STIM1 function and rescue of SOCE activity produced a neuronal phenotype with significantly greater resistance to ER stress induced by SERCA blockade. Moreover, we also report that STIM1 expression, despite elevating mitochondrial reactive oxygen species, endows the NG115-401L neuronal cells with significant resistance to agents that mediate glutathione depletion and subsequent oxidative stress induced apoptosis. Our findings thus suggest that STIM1 warrants further investigation as a potential mediator of neuroprotective pathways against ER and oxidative stress. Topics: Animals; Calcium; Catechols; Cell Death; Cytoprotection; Dose-Response Relationship, Drug; Endoplasmic Reticulum; Fatty Alcohols; Intracellular Calcium-Sensing Proteins; Membrane Proteins; Mitochondria; Neoplasm Proteins; Oxidative Stress; Stromal Interaction Molecule 1; Thapsigargin | 2016 |
Paradoxical effects of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activator gingerol on NG115-401L neuronal cells: failure to augment ER Ca(2+) uptake and protect against ER stress-induced cell death.
Perturbation of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are thought to underlie a spectrum of defects encompassing major societal diseases such as diabetes and neurodegeneration. In this report we used the NG115-401L neuronal cell line to test the hypothesis that neuroprotection against ER stress may be conferred by pharmacological stimulation of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pumps. We report that the SERCA activator gingerol stimulates SR microsomal Ca(2+)-ATPase activity and restores enzymatic function in the presence of potent SERCA blockers. Yet, enzyme protection in isolated membranes does not extend to protection from ER stress in intact NG115-401L cells. Surprisingly, gingerol not only failed to protect cells from SERCA blocker-induced ER stress and cell death, the compound itself potently induced cell death. Also, we report that gingerol failed to augment ER Ca(2+) uptake, a result contradictory to what has been observed in muscle. Unexpectedly, gingerol discharged ER Ca(2+) stores and coupled robustly to Ca(2+) influx pathways. These observations suggest that gingerol is not acting as a traditional SERCA blocker as thapsigargin mediated ER Ca(2+) store depletion fails to stimulate Ca(2+) influx in the NG115-401L cell phenotype. Moreover, cell death induced by gingerol, in contrast to the classic SERCA inhibitors, is not accompanied by increases in reactive oxygen species production or enzymatic caspase activity. These results argue for a finer regulatory control on SERCA function with gingerol's actions revealing potentially novel routes of coupling altered pump regulation to the assembly of functional Ca(2+) influx units and activation of cell death pathways. Topics: Animals; Biological Transport; Calcium; Catechols; Cell Death; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Enzyme Activators; Enzyme Inhibitors; Fatty Alcohols; Homeostasis; Indoles; Microsomes; Neurons; Rabbits; Sarcoplasmic Reticulum; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Thapsigargin | 2015 |
[6]-gingerol induces Ca2+ mobilization in Madin-Darby canine kidney cells.
[6]-gingerol, a major phenolic compound derived from ginger (Zingiber officinale), is a potential chemopreventive compound that can induce stress in cancer cells and cause apoptotic cell death. This study examines the early signaling effects of [6]-gingerol on renal cells. It was found that [6]-gingerol caused a slow and sustained rise of [Ca2+]i in a concentration-dependent manner. [6]-gingerol also induced a [Ca2+]i rise when extracellular Ca2+ was removed, but the magnitude was reduced by 80%. Depletion of intracellular Ca2+ stores with CCCP, a mitochondrial uncoupler, did not affect the action of [6]-gingerol. In a Ca2+-free medium, the [6]-gingerol-induced [Ca2+]i rise was partially abolished by depleting stored Ca2+ with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). The elevation of [6]-gingerol-caused [Ca2+]i in a Ca2+-containing medium was not affected by modulation of protein kinase C activity. The [6]-gingerol-induced Ca2+ influx was blocked by nicardipine. U73122, an inhibitor of phospholipase C, abolished ATP (but not [6]-gingerol)-induced [Ca2+]i rise. These findings suggest that [6]-gingerol induces a significant rise in [Ca2+]i in MDCK renal tubular cells by stimulating both extracellular Ca2+ influx and thapsigargin-sensitive intracellular Ca2+ release via as yet unidentified mechanisms. Topics: Animals; Anticarcinogenic Agents; Calcium Signaling; Catechols; Dogs; Fatty Alcohols; Kidney; Molecular Structure; Nicardipine; Plants, Medicinal; Taiwan; Thapsigargin; Zingiber officinale | 2008 |
Gingerol, isoproterenol and ouabain normalize impaired post-rest behavior but not force-frequency relation in failing human myocardium.
Rest- and stimulation frequency-dependent potentiation of contractile force is blunted in failing human myocardium. These alterations have been related to reduced sarcoplasmic reticulum (SR) Ca(2+)-reuptake and enhanced transsarcolemmal Ca(2+)-elimination by Na+/Ca(2+)-exchange. We investigated whether inotropic interventions that enhance SR Ca(2+)-uptake, or reduce Ca(2+)-elimination by Na+/Ca(2+)-exchange, normalize impaired post-rest and force-frequency behavior in left ventricular muscle strips from failing human hearts.. We tested the influence of [10]-gingerol which activates SR Ca(2+)-ATPase (10 mumol/l; n = 13), and isoproterenol which activates cAMP-dependent pathways (0.01, 0.1, 1 mumol/l; n = 40) on post-rest and force-frequency behavior. Ouabain which blocks Na+/K(+)-ATPase (0.03 mumol/l; n = 16) was used to test the effects of inhibiting Ca(2+)-elimination by Na+/Ca(2+)-exchange. For comparison, the effects of blocking SR Ca(2+)-uptake by thapsigargin (10 mumol/l; n = 14) were tested. In addition, Ca(2+)-uptake in myocardial homogenates was measured for gingerol (10 mumol/l; n = 6).. Gingerol, isoproterenol (0.1, 1 mumol/l) and ouabain exerted significant positive inotropic effects under basal experimental conditions and normalized post-rest behavior. In contrast, force-frequency relation was only slightly improved by gingerol and isoproterenol (0.01 mumol/l). Ouabain and isoproterenol (1 mumol/l) further deteriorated force-frequency relation due to frequency-dependent significant increases in diastolic tension. Thapsigargin exerted negative inotropic effects and significantly deteriorated post-rest and force-frequency behavior. In addition, gingerol increased SR Ca(2+)-uptake significantly in myocardial homogenates.. Inotropic interventions that stimulate SR Ca(2+)-ATPase or inhibit Na+/Ca(2+)-exchange normalize impaired post-rest behavior. Force-frequency behavior is only slightly improved by stimulation of SR Ca(2+)-ATPase but not by inhibition of Na+/Ca(2+)-exchange. This dissociation between post-rest and force-frequency behavior results from diastolic dysfunction at high stimulation rates. Topics: Adult; Analysis of Variance; Calcium; Calcium-Transporting ATPases; Cardiotonic Agents; Catechols; Cyclic AMP; Enzyme Inhibitors; Fatty Alcohols; Heart Failure; Humans; Isoproterenol; Middle Aged; Myocardial Contraction; Myocardium; Ouabain; Sarcoplasmic Reticulum; Sodium-Potassium-Exchanging ATPase; Stimulation, Chemical; Thapsigargin | 2000 |